skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AT2021lwx: Another Neutrino-coincident Tidal Disruption Event with a Strong Dust Echo?
Abstract We discuss the possible association of an astrophysical neutrino (IC220405B) with the recently reported, extremely energetic tidal disruption event (TDE) candidate AT2021lwx (ZTF20abrbeie, aka “Scary Barbie”) at redshiftz= 0.995. Although the TDE is about 2.°6 off the direction of the reconstructed neutrino event (outside the 90% confidence level localization region), the TDE candidate shares some important characteristics with so-far-reported neutrino–TDE associations: a strong infrared dust echo, high bolometric luminosity, a neutrino time delay with respect to the peak mass accretion rate of the order of a hundred days, and a high observed X-ray luminosity. We interpret this new association using an isotropic emission model, where neutrinos are produced by the collision of accelerated protons with infrared photons. After accounting for the high redshift of AT2021lwx (by interpreting the data in the supermassive black hole (SMBH) frame), we find that the expected neutrino fluences and neutrino time delays are qualitatively comparable to the other TDEs. Since data are only available up to 300 days postpeak in the SMBH frame, significant uncertainties exist in the dust echo interpretation, and therefore in the predicted number of neutrinos detected, N ν 3.0 × 10 3 0.012 . We recommend further follow-up of this object for an extended period and suggest refining the reconstruction of the neutrino arrival direction in this particular case.  more » « less
Award ID(s):
2012195 2309973
PAR ID:
10546050
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
969
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
136
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a detailed analysis of AT 2020nov, a tidal disruption event (TDE) in the center of its host galaxy, located at a redshift ofz= 0.083. AT 2020nov exhibits unique features, including double-peaked Balmer emission lines, a broad UV/optical flare, and a peak log luminosity in the extreme-ultraviolet (EUV) estimated at 45.6 6 0.33 + 0.10 erg s 1 . A late-time X-ray flare was also observed, reaching an absorbed luminosity of 1.67 × 1043erg s−1approximately 300 days after the UV/optical peak. Multiwavelength coverage, spanning optical, UV, X-ray, and mid-infrared (MIR) bands, reveals a complex spectral energy distribution (SED) that includes MIR flaring indicative of dust echoes, suggesting a dust covering fraction consistent with typical TDEs. Spectral modeling indicates the presence of an extended, quiescent disk around the central supermassive black hole with a radius of 5.0 6 0.77 + 0.59 × 1 0 4 R g . The multicomponent SED model, which includes a significant EUV component, suggests that the primary emission from the TDE is reprocessed by this extended disk, producing the observed optical and MIR features. The lack of strong active galactic nuclei signatures in the host galaxy, combined with the quiescent disk structure, highlights AT 2020nov as a rare example of a TDE occurring in a galaxy with a dormant but extended preexisting accretion structure. 
    more » « less
  2. Abstract We present a toy model for the thermal optical/UV/X-ray emission from tidal disruption events (TDEs). Motivated by recent hydrodynamical simulations, we assume that the debris streams promptly and rapidly circularize (on the orbital period of the most tightly bound debris), generating a hot quasi-spherical pressure-supported envelope of radiusRv∼ 1014cm (photosphere radius ∼1015cm) surrounding the supermassive black hole (SMBH). As the envelope cools radiatively, it undergoes Kelvin–Helmholtz contractionRv∝t−1, its temperature risingTeff∝t1/2while its total luminosity remains roughly constant; the optical luminosity decays as ν L ν R v 2 T eff t 3 / 2 . Despite this similarity to the mass fallback rate M ̇ fb t 5 / 3 , envelope heating from fallback accretion is subdominant compared to the envelope cooling luminosity except near optical peak (where they are comparable). Envelope contraction can be delayed by energy injection from accretion from the inner envelope onto the SMBH in a regulated manner, leading to a late-time flattening of the optical/X-ray light curves, similar to those observed in some TDEs. Eventually, as the envelope contracts to near the circularization radius, the SMBH accretion rate rises to its maximum, in tandem with the decreasing optical luminosity. This cooling-induced (rather than circularization-induced) delay of up to several hundred days may account for the delayed onset of thermal X-rays, late-time radio flares, and high-energy neutrino generation, observed in some TDEs. We compare the model predictions to recent TDE light-curve correlation studies, finding both agreement and points of tension. 
    more » « less
  3. Abstract Active galactic nuclei (AGN) are promising candidate sources of high-energy astrophysical neutrinos, since they provide environments rich in matter and photon targets where cosmic-ray interactions may lead to the production of gamma rays and neutrinos. We searched for high-energy neutrino emission from AGN using the Swift-BAT Spectroscopic Survey catalog of hard X-ray sources and 12 yr of IceCube muon track data. First, upon performing a stacked search, no significant emission was found. Second, we searched for neutrinos from a list of 43 candidate sources and found an excess from the direction of two sources, the Seyfert galaxies NGC 1068 and NGC 4151. We observed NGC 1068 at flux ϕ ν μ + ν ¯ μ = 4.0 2 1.52 + 1.58 × 1 0 11 TeV−1cm−2s−1normalized at 1 TeV, with a power-law spectral indexγ= 3.10 0.22 + 0.26 , consistent with previous IceCube results. The observation of a neutrino excess from the direction of NGC 4151 is at a posttrial significance of 2.9σ. If interpreted as an astrophysical signal, the excess observed from NGC 4151 corresponds to a flux ϕ ν μ + ν ¯ μ = 1.5 1 0.81 + 0.99 × 1 0 11 TeV−1cm−2s−1normalized at 1 TeV andγ= 2.83 0.28 + 0.35
    more » « less
  4. Abstract A star completely destroyed in a tidal disruption event (TDE) ignites a luminous flare that is powered by the fallback of tidally stripped debris to a supermassive black hole (SMBH) of massM. We analyze two estimates for the peak fallback rate in a TDE, one being the “frozen-in” model, which predicts a strong dependence of the time to peak fallback rate,tpeak, on both stellar mass and age, with 15 days ≲tpeak≲ 10 yr for main sequence stars with masses 0.2 ≤M/M≤ 5 andM= 106M. The second estimate, which postulates that the star is completely destroyed when tides dominate the maximum stellar self-gravity, predicts thattpeakis very weakly dependent on stellar type, with t peak = 23.2 ± 4.0 days M / 10 6 M 1 / 2 for 0.2 ≤M/M≤ 5, while t peak = 29.8 ± 3.6 days M / 10 6 M 1 / 2 for a Kroupa initial mass function truncated at 1.5M. This second estimate also agrees closely with hydrodynamical simulations, while the frozen-in model is discrepant by orders of magnitude. We conclude that (1) the time to peak luminosity in complete TDEs is almost exclusively determined by SMBH mass, and (2) massive-star TDEs power the largest accretion luminosities. Consequently, (a) decades-long extra-galactic outbursts cannot be powered by complete TDEs, including massive-star disruptions, and (b) the most highly super-Eddington TDEs are powered by the complete disruption of massive stars, which—if responsible for producing jetted TDEs—would explain the rarity of jetted TDEs and their preference for young and star-forming host galaxies. 
    more » « less
  5. Abstract The nature of dark matter remains unresolved in fundamental physics. Weakly Interacting Massive Particles (WIMPs), which could explain the nature of dark matter, can be captured by celestial bodies like the Sun or Earth, leading to enhanced self-annihilation into Standard Model particles including neutrinos detectable by neutrino telescopes such as the IceCube Neutrino Observatory. This article presents a search for muon neutrinos from the center of the Earth performed with 10 years of IceCube data using a track-like event selection. We considered a number of WIMP annihilation channels ($$\chi \chi \rightarrow \tau ^+\tau ^-$$ χ χ τ + τ - /$$W^+W^-$$ W + W - /$$b\bar{b}$$ b b ¯ ) and masses ranging from 10 GeV to 10 TeV. No significant excess over background due to a dark matter signal was found while the most significant result corresponds to the annihilation channel$$\chi \chi \rightarrow b\bar{b}$$ χ χ b b ¯ for the mass$$m_{\chi }=250$$ m χ = 250  GeV with a post-trial significance of$$1.06\sigma $$ 1.06 σ . Our results are competitive with previous such searches and direct detection experiments. Our upper limits on the spin-independent WIMP scattering are world-leading among neutrino telescopes for WIMP masses$$m_{\chi }>100$$ m χ > 100  GeV. 
    more » « less