skip to main content


This content will become publicly available on February 21, 2025

Title: Cyclic and Linear Tetrablock Copolymers Synthesized at Speed and Scale by Lewis Pair Polymerization of a One-Pot (Meth)acrylic Mixture and Characterized at Multiple Levels
Award ID(s):
2305058
PAR ID:
10546110
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
146
Issue:
7
ISSN:
0002-7863
Page Range / eLocation ID:
4930 to 4941
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc>

    Quirks are generic predictions of strongly-coupled dark sectors. For weak-scale masses and a broad range of confining scales in the dark sector, quirks can be discovered only at the energy frontier, but quirk-anti-quirk pairs are produced with unusual signatures at lowpT, making them difficult to detect at the large LHC detectors. We determine the prospects for discovering quirks using timing information at FASER, FASER2, and an “ultimate detector” in the far-forward region at the LHC. NLO QCD corrections are incorporated in the simulation of quirk production, which can significantly increase the production rate. To accurately propagate quirk pairs from the ATLAS interaction point to the forward detectors, the ionization energy loss of charged quirks traveling through matter, the radiation of infracolor glueballs and QCD hadrons during quirk pair oscillations, and the annihilation of quirkonium are properly considered. The quirk signal is separated from the large muon background using timing information from scintillator detectors by requiring either two coincident delayed tracks, based on arrival times at the detector, or two coincident slow tracks, based on time differences between hits in the front and back scintillators. We find that simple cuts preserve much of the signal, but reduce the muon background to negligible levels. With the data already collected, FASER can discover quirks in currently unconstrained parameter space. FASER2, running at the Forward Physics Facility during the HL-LHC era, will greatly extend this reach, probing the TeV-scale quirk masses motivated by the gauge hierarchy problem for the broad range of dark-sector confining scales between 100 eV and 100 keV.

     
    more » « less
  2. In this paper, we present a technique for estimating the geometry and reflectance of objects using only a camera, flashlight, and optionally a tripod. We propose a simple data capture technique in which the user goes around the object, illuminating it with a flashlight and capturing only a few images. Our main technical contribution is the introduction of a recursive neural architecture, which can predict geometry and reflectance at 2 k ×2 k resolution given an input image at 2 k ×2 k and estimated geometry and reflectance from the previous step at 2 k−1 ×2 k−1 . This recursive architecture, termed RecNet, is trained with 256×256 resolution but can easily operate on 1024×1024 images during inference. We show that our method produces more accurate surface normal and albedo, especially in regions of specular highlights and cast shadows, compared to previous approaches, given three or fewer input images. 
    more » « less
  3. We experimentally demonstrate waveguiding at the critical angle in a dielectric multi-layered structure. At this exceptional point, the waveguide becomes scale invariant and the field is confined to the low-index region, with a spatially-uniform transverse profile

     
    more » « less
  4. null (Ed.)