A<sc>bstract</sc> Proton-proton collisions at energy-frontier facilities produce an intense flux of high-energy light particles, including neutrinos, in the forward direction. At the LHC, these particles are currently being studied with the far-forward experiments FASER/FASERνand SND@LHC, while new dedicated experiments have been proposed in the context of a Forward Physics Facility (FPF) operating at the HL-LHC. Here we present a first quantitative exploration of the reach for neutrino, QCD, and BSM physics of far-forward experiments integrated within the proposed Future Circular Collider (FCC) project as part of its proton-proton collision program (FCC-hh) at$$ \sqrt{s} $$ ≃ 100 TeV. We find that 109electron/muon neutrinos and 107tau neutrinos could be detected, an increase of several orders of magnitude compared to (HL-)LHC yields. We study the impact of neutrino DIS measurements at the FPF@FCC to constrain the unpolarised and spin partonic structure of the nucleon and assess their sensitivity to nuclear dynamics down tox∼ 10−9with neutrinos produced in proton-lead collisions. We demonstrate that the FPF@FCC could measure the neutrino charge radius forνeandνμand reach down to five times the SM value forντ. We fingerprint the BSM sensitivity of the FPF@FCC for a variety of models, including dark Higgs bosons, relaxion-type scenarios, quirks, and millicharged particles, finding that these experiments would be able to discover LLPs with masses as large as 50 GeV and couplings as small as 10−8, and quirks with masses up to 10 TeV. Our study highlights the remarkable opportunities made possible by integrating far-forward experiments into the FCC project, and it provides new motivation for the FPF at the HL-LHC as an essential precedent to optimize the forward physics experiments that will enable the FCC to achieve its full physics potential.
more »
« less
Discovering quirks through timing at FASER and future forward experiments at the LHC
A<sc>bstract</sc> Quirks are generic predictions of strongly-coupled dark sectors. For weak-scale masses and a broad range of confining scales in the dark sector, quirks can be discovered only at the energy frontier, but quirk-anti-quirk pairs are produced with unusual signatures at lowpT, making them difficult to detect at the large LHC detectors. We determine the prospects for discovering quirks using timing information at FASER, FASER2, and an “ultimate detector” in the far-forward region at the LHC. NLO QCD corrections are incorporated in the simulation of quirk production, which can significantly increase the production rate. To accurately propagate quirk pairs from the ATLAS interaction point to the forward detectors, the ionization energy loss of charged quirks traveling through matter, the radiation of infracolor glueballs and QCD hadrons during quirk pair oscillations, and the annihilation of quirkonium are properly considered. The quirk signal is separated from the large muon background using timing information from scintillator detectors by requiring either two coincident delayed tracks, based on arrival times at the detector, or two coincident slow tracks, based on time differences between hits in the front and back scintillators. We find that simple cuts preserve much of the signal, but reduce the muon background to negligible levels. With the data already collected, FASER can discover quirks in currently unconstrained parameter space. FASER2, running at the Forward Physics Facility during the HL-LHC era, will greatly extend this reach, probing the TeV-scale quirk masses motivated by the gauge hierarchy problem for the broad range of dark-sector confining scales between 100 eV and 100 keV.
more »
« less
- PAR ID:
- 10522554
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 6
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A search for dark matter in the form of strongly interacting massive particles (SIMPs) using the CMS detector at the LHC is presented. The SIMPs would be produced in pairs that manifest themselves as pairs of jets without tracks. The energy fraction of jets carried by charged particles is used as a key discriminator to suppress efficiently the large multijet background, and the remaining background is estimated directly from data. The search is performed using proton–proton collision data corresponding to an integrated luminosity of 16.1 $$\,\text {fb}^{-1}$$ fb - 1 , collected with the CMS detector in 2016. No significant excess of events is observed above the expected background. For the simplified dark matter model under consideration, SIMPs with masses up to 100 $$\,\text {GeV}$$ GeV are excluded and further sensitivity is explored towards higher masses.more » « less
-
A<sc>bstract</sc> A search for “emerging jets” produced in proton-proton collisions at a center-of-mass energy of 13 TeV is performed using data collected by the CMS experiment corresponding to an integrated luminosity of 138 fb−1. This search examines a hypothetical dark quantum chromodynamics (QCD) sector that couples to the standard model (SM) through a scalar mediator. The scalar mediator decays into an SM quark and a dark sector quark. As the dark sector quark showers and hadronizes, it produces long-lived dark mesons that subsequently decay into SM particles, resulting in a jet, known as an emerging jet, with multiple displaced vertices. This search looks for pair production of the scalar mediator at the LHC, which yields events with two SM jets and two emerging jets at leading order. The results are interpreted using two dark sector models with different flavor structures, and exclude mediator masses up to 1950 (1950) GeV for an unflavored (flavor-aligned) dark QCD model. The unflavored results surpass a previous search for emerging jets by setting the most stringent mediator mass exclusion limits to date, while the flavor-aligned results provide the first direct mediator mass exclusion limits to date.more » « less
-
Abstract The recent direct detection of neutrinos at the LHC has opened a new window on high-energy particle physics and highlighted the potential of forward physics for groundbreaking discoveries. In the last year, the physics case for forward physics has continued to grow, and there has been extensive work on defining the Forward Physics Facility and its experiments to realize this physics potential in a timely and cost-effective manner. Following a 2-page Executive Summary, we first present the status of the FPF, beginning with the FPF’s unique potential to shed light on dark matter, new particles, neutrino physics, QCD, and astroparticle physics. We then summarize the current designs for the Facility and its experiments, FASER2, FASER$$\nu $$ 2, FORMOSA, and FLArE.more » « less
-
A search for long-lived particles (LLPs) decaying in the CMS muon detectors is presented. A data sample of proton-proton collisions at corresponding to an integrated luminosity of , recorded at the LHC in 2016–2018, is used. The decays of LLPs are reconstructed as high multiplicity clusters of hits in the muon detectors. In the context of twin Higgs models, the search is sensitive to LLP masses from 0.4 to 55 GeV and a broad range of LLP decay modes, including decays to hadrons, leptons, electrons, or photons. No excess of events above the standard model background is observed. The most stringent limits to date from LHC data are set on the branching fraction of the Higgs boson decay to a pair of LLPs with masses below 10 GeV. This search also provides the best limits for various intervals of LLP proper decay length and mass. Finally, this search sets the first limits at the LHC on a dark quantum chromodynamic sector whose particles couple to the Higgs boson through gluon, Higgs boson, photon, vector, and dark-photon portals, and is sensitive to branching fractions of the Higgs boson to dark quarks as low as . © 2024 CERN, for the CMS Collaboration2024CERNmore » « less