skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Provincial-scale assessment of direct air capture to meet China’s climate neutrality goal under limited bioenergy supply
Abstract China has large, estimated potential for direct air carbon capture and storage (DACCS) but its deployment locations and impacts at the subnational scale remain unclear. This is largely because higher spatial resolution studies on carbon dioxide removal (CDR) in China have focused mainly on bioenergy with carbon capture and storage. This study uses a spatially detailed integrated energy-economy-climate model to evaluate DACCS for 31 provinces in China as the country pursues its goal of climate neutrality by 2060. We find that DACCS could expand China’s negative emissions capacity, particularly under sustainability-minded limits on bioenergy supply that are informed by bottom-up studies. But providing low-carbon electricity for multiple GtCO2yr−1DACCS may require over 600 GW of additional wind and solar capacity nationwide and comprise up to 30% of electricity demand in China’s northern provinces. Investment requirements for DACCS range from $330 to $530 billion by 2060 but could be repaid manyfold in the form of avoided mitigation costs, which DACCS deployment could reduce by up to $6 trillion over the same period. Enhanced efforts to lower residual CO2emissions that must be offset with CDR under a net-zero paradigm reduce but do not eliminate the use of DACCS for mitigation. For decision-makers and the energy-economy models guiding them, our results highlight the value of expanding beyond the current reliance on biomass for negative emissions in China.  more » « less
Award ID(s):
2215396
PAR ID:
10546123
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
19
Issue:
11
ISSN:
1748-9326
Format(s):
Medium: X Size: Article No. 114021
Size(s):
Article No. 114021
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract To achieve net zero carbon emissions by mid-century, the United States may need to rely on carbon dioxide removal (CDR) to offset emissions from difficult-to-decarbonize sectors and/or shortfalls in near-term mitigation efforts. CDR can be delivered using many approaches with different requirements for land, water, geologic carbon storage capacity, energy, and other resources. The availability of these resources varies by region in the U.S. suggesting that CDR deployment will be uneven across the country. Using the global change analysis model for the United States (GCAM-USA), we modeled six classes of CDR and explored their potential using four scenarios: a scenario where all the CDR pathways are available (Full Portfolio), a scenario with restricted carbon capture and storage (Low CCS), a scenario where the availability of bio-based CDR options is limited (Low Bio), and a scenario with constraints on enhanced rock weathering (ERW) capabilities (Low ERW). We find that by employing a diverse set of CDR approaches, the U.S. could remove between 1 and 1.9 GtCO2/yr by midcentury. In the Full Portfolio scenario, direct air carbon capture and storage (DACCS) predominates, delivering approximately 50% of CO2removal, with bioenergy with carbon capture and storage contributing 25%, and ERW delivering 11.5%. Texas and the agricultural Midwest lead in CDR deployment due to their abundant agricultural land and geological storage availability. In the Low CCS scenario, reliance on DACCS decreases, easing pressure on energy systems but increasing pressure on the land. In all cases CDR deployment was found to drive important impacts on energy, land, or materials supply chains (to supply ERW, for example) and these effects were generally more pronounced when fewer CDR technologies were available. 
    more » « less
  2. <bold>Abstract</bold> Net-zero greenhouse gas emission targets are central to current international efforts to stabilize global climate, and many of these plans rely on carbon dioxide removal (CDR) to meet mid-century goals. CDR can be performed via nature-based approaches, such as afforestation, or engineered approaches, such as direct air capture. Both will have large impacts in the regions where they are sited. We used the Global Change Analysis Model for the United States to analyze how regional resources will influence and be influenced by CDR deployment in service of United States national net-zero targets. Our modeling suggests that CDR will be deployed extensively, but unevenly, across the country. A number of US states have the resources, such as geologic carbon storage capacity and agricultural land, needed to become net exporters of negative emissions. But this will require reallocation of resources, such as natural gas and electricity, and dramatically increase water and fertilizer use in many places. Modeling these kinds of regional or sub-national impacts associated with CDR, as intrinsically uncertain as it is at this time, is critical for understanding its true potential in meeting decarbonization commitments. 
    more » « less
  3. Abstract Understanding the costs and the spatial distribution of health and employment outcomes of low-carbon electricity pathways is critical to enable an equitable transition. We integrate an electricity system planning model (GridPath), a health impact model (InMAP), and a multiregional input–output model to quantify China’s provincial-level impacts of electricity system decarbonization on costs, health outcomes, employment, and labor compensation. We find that even without specific CO2constraints, declining renewable energy and storage costs enable a 26% decline in CO2emissions in 2040 compared to 2020 under the Reference scenario. Compared to the Reference scenario, pursuing 2 °C and 1.5 °C compatible carbon emission targets (85% and 99% decrease in 2040 CO2emissions relative to 2020 levels, respectively) reduces air pollution-related premature deaths from electricity generation over 2020–2040 by 51% and 63%, but substantially increases annual average costs per unit of electricity demand in 2040 (21% and 39%, respectively). While the 2 °C pathway leads to a 3% increase in electricity sector-related net labor compensation, the 1.5 °C pathway results in a 19% increase in labor compensation driven by greater renewable energy deployment. Although disparities in health impacts across provinces narrow as fossil fuels phase out, disparities in labor compensation widen with wealthier East Coast provinces gaining the most in labor compensation because of materials and equipment manufacturing, and offshore wind deployment. 
    more » « less
  4. ABSTRACT Carbon dioxide removal technologies such as bioenergy with carbon capture and storage (BECCS) are required if the effects of climate change are to be reversed over the next century. However, BECCS demands extensive land use change that may create positive or negative radiative forcing impacts upstream of the BECCS facility through changes to in situ greenhouse gas fluxes and land surface albedo. When quantifying these upstream climate impacts, even at a single site, different methods can give different estimates. Here we show how three common methods for estimating the net ecosystem carbon balance of bioenergy crops established on former grassland or former cropland can differ in their central estimates and uncertainty. We place these net ecosystem carbon balance forcings in the context of associated radiative forcings from changes to soil N2O and CH4fluxes, land surface albedo, embedded fossil fuel use, and geologically stored carbon. Results from long term eddy covariance measurements, a soil and plant carbon inventory, and the MEMS 2 process‐based ecosystem model all agree that establishing perennials such as switchgrass or mixed prairie on former cropland resulted in net negative radiative forcing (i.e., global cooling) of −26.5 to −39.6 fW m−2over 100 years. Establishing these perennials on former grassland sites had similar climate mitigation impacts of −19.3 to −42.5 fW m−2. However, the largest climate mitigation came from establishing corn for BECCS on former cropland or grassland, with radiative forcings from −38.4 to −50.5 fW m−2, due to its higher plant productivity and therefore more geologically stored carbon. Our results highlight the strengths and limitations of each method for quantifying the field scale climate impacts of BECCS and show that utilizing multiple methods can increase confidence in the final radiative forcing estimates. 
    more » « less
  5. Abstract Bioenergy with carbon capture and storage (BECCS) has been proposed as a potential climate mitigation strategy raising concerns over trade‐offs with existing ecosystem services. We evaluate the feasibility of BECCS in the Upper Missouri River Basin (UMRB), a landscape with diverse land use, ownership, and bioenergy potential. We develop land‐use change scenarios and a switchgrass (Panicum virgatumL.) crop functional type to use in a land‐surface model to simulate second‐generation bioenergy production. By the end of this century, average annual switchgrass production over the UMRB ranges from 60 to 210 Tg dry mass/year and is dependent on the Representative Concentration Pathway for greenhouse gas emissions and on land‐use change assumptions. Under our simple phase‐in assumptions this results in a cumulative total production of 2,000–6,000 Tg C over the study period with the upper estimates only possible in the absence of climate change. Switchgrass yields decreased as average CO2concentrations and temperatures increased, suggesting the effect of elevated atmospheric CO2was small because of its C4 photosynthetic pathway. By the end of the 21st century, the potential energy stored annually in harvested switchgrass averaged between 1 and 4 EJ/year assuming perfect conversion efficiency, or an annual electrical generation capacity of 7,000–28,000 MW assuming current bioenergy efficiency rates. Trade‐offs between bioenergy and ecosystem services were identified, including cumulative direct losses of 1,000–2,600 Tg C stored in natural ecosystems from land‐use change by 2090. Total cumulative losses of ecosystem carbon stocks were higher than the potential ~300 Tg C in fossil fuel emissions from the single largest power plant in the region over the same time period, and equivalent to potential carbon removal from the atmosphere from using biofuels grown in the same region. Numerous trade‐offs from BECCS expansion in the UMRB must be balanced against the potential benefits of a carbon‐negative energy system. 
    more » « less