Abstract The karrikin (KAR) receptor and several related signaling components have been identified by forward genetic screening, but only a few studies have reported on upstream and downstream KAR signaling components and their roles in drought tolerance. Here, we characterized the functions of KAR UPREGULATED F-BOX 1 (KUF1) in drought tolerance using a reverse genetics approach in Arabidopsis (Arabidopsis thaliana). We observed that kuf1 mutant plants were more tolerant to drought stress than wild-type (WT) plants. To clarify the mechanisms by which KUF1 negatively regulates drought tolerance, we performed physiological, transcriptome, and morphological analyses. We found that kuf1 plants limited leaf water loss by reducing stomatal aperture and cuticular permeability. In addition, kuf1 plants showed increased sensitivity of stomatal closure, seed germination, primary root growth, and leaf senescence to abscisic acid (ABA). Genome-wide transcriptome comparisons of kuf1 and WT rosette leaves before and after dehydration showed that the differences in various drought tolerance-related traits were accompanied by differences in the expression of genes associated with stomatal closure (e.g. OPEN STOMATA 1), lipid and fatty acid metabolism (e.g. WAX ESTER SYNTHASE), and ABA responsiveness (e.g. ABA-RESPONSIVE ELEMENT 3). The kuf1 mutant plants had higher root/shoot ratios and root hair densities than WT plants, suggesting that they could absorb more water than WT plants. Together, these results demonstrate that KUF1 negatively regulates drought tolerance by modulating various physiological traits, morphological adjustments, and ABA responses and that the genetic manipulation of KUF1 in crops is a potential means of enhancing their drought tolerance. 
                        more » 
                        « less   
                    
                            
                            Abscisic acid–mediated autoregulation of the MYB41-BRAHMA module enhances drought tolerance in Arabidopsis
                        
                    
    
            Abstract Drought stress poses a substantial challenge to plant growth and agricultural productivity worldwide. Upon water depletion, plants activate an abscisic acid (ABA) signaling pathway, leading to stomatal closure to reduce water loss. The MYB family of transcription factors plays diverse roles in growth, development, stress responses, and biosynthesis, yet their involvement in stomatal regulation remains unclear. Here, we demonstrate that ABA significantly upregulates the expression of MYB41, MYB74, and MYB102, with MYB41 serving as a key regulator that induces the expression of both MYB74 and MYB102. Through luciferase assays, chromatin immunoprecipitation (ChIP) assays, and electrophoretic mobility shift assays (EMSA), we reveal that MYB41 engages in positive feedback regulation by binding to its own promoter, thus amplifying its transcription in Arabidopsis (Arabidopsis thaliana). Furthermore, our investigation showed that MYB41 recruits BRAHMA (BRM), the core ATPase subunit of the SWI/SNF complex, to the MYB41 promoter, facilitating the binding of HISTONE DEACETYLASE 6 (HDA6). This recruitment triggers epigenetic modifications, resulting in reduced MYB41 expression characterized by elevated H3K27me3 levels and concurrent decreases in H3ac, H3K27ac, and H3K14ac levels in wild-type plants compared to brm knockout mutant plants. Our genetic and molecular analyses show that ABA mediates autoregulation of the MYB41-BRM module, which intricately modulates stomatal movement in A. thaliana. This discovery sheds light on a drought response mechanism with the potential to greatly enhance agricultural productivity. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2238942
- PAR ID:
- 10546141
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Plant Physiology
- Volume:
- 196
- Issue:
- 2
- ISSN:
- 0032-0889
- Format(s):
- Medium: X Size: p. 1608-1626
- Size(s):
- p. 1608-1626
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Summary Drought and the availability of nitrate, the predominant source of nitrogen (N) in agriculture, are major factors limiting plant growth and crop productivity. The dissection of the transcriptional networks' components integrating droght stress and nitrate responses provides valuable insights into how plants effectively balance stress response with growth programs. Recent evidence inArabidopsis thalianaindicates that transcription factors (TFs) involved in abscisic acid (ABA) signaling affect N metabolism and nitrate responses, and reciprocally, components of nitrate signaling might affect ABA and drought gene responses. Advances in understanding regulatory circuits of nitrate and drought crosstalk in plant tissues empower targeted genetic modifications to enhance plant development and stress resistance, critical traits for optimizing crop yield and promoting sustainable agriculture.more » « less
- 
            Abstract By regulating carbon uptake and water loss by plants, stomata are not only responsible for productivity but also survival during drought. The timing of the onset of stomatal closure is crucial for preventing excessive water loss during drought, but is poorly explained by plant hydraulics alone and what triggers stomatal closure remains disputed. We investigated whether the hormone abscisic acid (ABA) was this trigger in a highly embolism‐resistant tree speciesUmbellularia californica. We tracked leaf ABA levels, determined the leaf water potential and gravimetric soil water content (gSWC) thresholds for stomatal closure and transpiration decline during a progressive drought. We found thatU. californicaplants have a peaking‐type ABA dynamic, where ABA levels rise early in drought and then decline under prolonged drought conditions. The early increase in ABA levels correlated with the closing of stomata and reduced transpiration. Furthermore, we found that transpiration declined before any large decreases in predawn plant water status and could best be explained by transient drops in midday water potentials triggering increased ABA levels. Our results indicate that ABA‐mediated stomatal regulation may be an integral mechanism for reducing transpiration during drought before major drops in bulk soil and plant water status.more » « less
- 
            In plants, epidermal guard cells integrate and respond to numerous environmental signals to control stomatal pore apertures, thereby regulating gas exchange. Chromatin structure controls transcription factor (TF) access to the genome, but whether large-scale chromatin remodeling occurs in guard cells during stomatal movements, and in response to the hormone abscisic acid (ABA) in general, remains unknown. Here, we isolate guard cell nuclei fromArabidopsis thalianaplants to examine whether the physiological signals, ABA and CO2(carbon dioxide), regulate guard cell chromatin during stomatal movements. Our cell type–specific analyses uncover patterns of chromatin accessibility specific to guard cells and define cis-regulatory sequences supporting guard cell–specific gene expression. We find that ABA triggers extensive and dynamic chromatin remodeling in guard cells, roots, and mesophyll cells with clear patterns of cell type specificity. DNA motif analyses uncover binding sites for distinct TFs enriched in ABA-induced and ABA-repressed chromatin. We identify the Abscisic Acid Response Element (ABRE) Binding Factor (ABF) bZIP-type TFs that are required for ABA-triggered chromatin opening in guard cells and roots and implicate the inhibition of a clade of bHLH-type TFs in controlling ABA-repressed chromatin. Moreover, we demonstrate that ABA and CO2induce distinct programs of chromatin remodeling, whereby elevated atmospheric CO2had only minimal impact on chromatin dynamics. We provide insight into the control of guard cell chromatin dynamics and propose that ABA-induced chromatin remodeling primes the genome for abiotic stress resistance.more » « less
- 
            Virus infection can increase drought tolerance of infected plants compared with noninfected plants; however, the mechanisms mediating virus-induced drought tolerance remain unclear. In this study, we demonstrate turnip mosaic virus (TuMV) infection increases Arabidopsis thaliana survival under drought compared with uninfected plants. To determine if specific TuMV proteins mediate drought tolerance, we cloned the coding sequence for each of the major viral proteins and generated transgenic A. thaliana that constitutively express each protein. Three TuMV proteins, 6K1, 6K2, and NIa-Pro, enhanced drought tolerance of A. thaliana when expressed constitutively in plants compared with controls. While in the control plant, transcripts related to abscisic acid (ABA) biosynthesis and ABA levels were induced under drought, there were no changes in ABA or related transcripts in plants expressing 6K2 under drought compared with well-watered conditions. Expression of 6K2 also conveyed drought tolerance in another host plant, Nicotiana benthamiana, when expressed using a virus overexpression construct. In contrast to ABA, 6K2 expression enhanced salicylic acid (SA) accumulation in both Arabidopsis and N. benthamiana. These results suggest 6K2-induced drought tolerance is mediated through increased SA levels and SA-dependent induction of plant secondary metabolites, osmolytes, and antioxidants that convey drought tolerance. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
