skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Slippery sequences stall the 26S proteasome at multiple points along the translocation pathway
Abstract In eukaryotes, the ubiquitin‐proteasome system is responsible for intracellular protein degradation. Proteins tagged with ubiquitin are recognized by ubiquitin receptors on the 19S regulatory particle (RP) of the 26S proteasome, unfolded, routed through the translocation channel of the RP, and are then degraded in the 20S core particle (CP). Aromatic paddles on the pore‐1 loops of the RP's Rpt subunits grip the substrate and pull folded domains into the channel, thereby unfolding them. The sequence that the aromatic paddles grip while unfolding a substrate is therefore expected to influence the extent of unfolding, and low complexity sequences have been shown to interfere with grip. However, the detailed spatial requirements for grip while unfolding proteins, particularly from the N‐terminus, remain unknown. We determined how the location of glycine‐rich tracts relative to a folded domain impairs unfolding. We find that, in contrast to a previous report, inserting glycine‐rich sequences closer to the folded domain reduced unfolding ability more than positioning them further away. Locations that have the biggest effect on unfolding map onto the regions where the aromatic paddles are predicted to interact with the substrate. Effects on unfolding from locations up to 67 amino acids away from the folded domain suggest that there are additional interactions between the substrate and the proteasome beyond the aromatic paddles that facilitate translocation of the substrate. In sum, this study deepens understanding of the mechanical interactions within the substrate channel by mapping the spacing of interactions between the substrate and the proteasome during unfolding.  more » « less
Award ID(s):
1935596
PAR ID:
10546203
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Protein Science
Volume:
33
Issue:
6
ISSN:
0961-8368
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ubiquitin–proteasome system is responsible for the bulk of protein degradation in eukaryotic cells. Proteins are generally targeted to the 26S proteasome through the attachment of polyubiquitin chains. Several proteins also contain ubiquitin-independent degrons (UbIDs) that allow for proteasomal targeting without the need for ubiquitination. Our laboratory previously showed that UbID substrates are less processively degraded than ubiquitinated substrates, but the mechanism underlying this difference remains unclear. We therefore designed two model substrates containing both a ubiquitination site and a UbID for a more direct comparison. We found UbID degradation to be overall less robust, with complete degradation only occurring with loosely folded substrates. UbID degradation was unaffected by the nonhydrolyzable ATP analog ATPγS, indicating that UbID degradation proceeds in an ATP-independent manner. Stabilizing substrates halted UbID degradation, indicating that the proteasome can only capture UbID substrates if they are already at least transiently unfolded, as confirmed using native-state proteolysis. The 26S proteasome therefore switches between ATP-independent weak degradation and ATP-dependent robust unfolding and degradation depending on whether or not the substrate is ubiquitinated. 
    more » « less
  2. Abstract The proteasome, the primary protease for ubiquitin-dependent proteolysis in eukaryotes, is usually found as a mixture of 30S, 26S, and 20S complexes. These complexes have common catalytic sites, which makes it challenging to determine their distinctive roles in intracellular proteolysis. Here, we chemically synthesize a panel of homogenous ubiquitinated proteins, and use them to compare 20S and 26S proteasomes with respect to substrate selection and peptide-product generation. We show that 20S proteasomes can degrade the ubiquitin tag along with the conjugated substrate. Ubiquitin remnants on branched peptide products identified by LC-MS/MS, and flexibility in the 20S gate observed by cryo-EM, reflect the ability of the 20S proteasome to proteolyze an isopeptide-linked ubiquitin-conjugate. Peptidomics identifies proteasome-trapped ubiquitin-derived peptides and peptides of potential 20S substrates in Hi20S cells, hypoxic cells, and human failing-heart. Moreover, elevated levels of 20S proteasomes appear to contribute to cell survival under stress associated with damaged proteins. 
    more » « less
  3. Ubiquitination is one of the most common posttranslational modifications in eukaryotic cells. Depending on the architecture of polyubiquitin chains, substrate proteins can meet different cellular fates, but our understanding of how chain linkage controls protein fate remains limited. UBL-UBA shuttle proteins, such as UBQLN2, bind to ubiquitinated proteins and to the proteasome or other protein quality control machinery elements and play a role in substrate fate determination. Under physiological conditions, UBQLN2 forms biomolecular condensates through phase separation, a physicochemical phenomenon in which multivalent interactions drive the formation of a macromolecule-rich dense phase. Ubiquitin and polyubiquitin chains modulate UBQLN2’s phase separation in a linkage-dependent manner, suggesting a possible link to substrate fate determination, but polyubiquitinated substrates have not been examined directly. Using sedimentation assays and microscopy we show that polyubiquitinated substrates induce UBQLN2 phase separation and incorporate into the resulting condensates. This substrate effect is strongest with K63-linked substrates, intermediate with mixed-linkage substrates, and weakest with K48-linked substrates. Proteasomes can be recruited to these condensates, but proteasome activity toward K63-linked and mixed linkage substrates is inhibited in condensates. Substrates are also protected from deubiquitinases by UBQLN2-induced phase separation. Our results suggest that phase separation could regulate the fate of ubiquitinated substrates in a chain-linkage-dependent manner, thus serving as an interpreter of the ubiquitin code. 
    more » « less
  4. Protein aggregation is associated with a growing list of human diseases. A substantial fraction of proteins in eukaryotic proteomes constitutes a proteostasis network—a collection of proteins that work together to maintain properly folded proteins. One of the overarching functions of the proteostasis network is the prevention or reversal of protein aggregation. How proteins aggregate in spite of the anti-aggregation activity of the proteostasis machinery is incompletely understood. Exposed hydrophobic patches can trigger degradation by the ubiquitin-proteasome system, a key branch of the proteostasis network. However, in a recent study, we found that model glycine (G)-rich or glutamine/asparagine (Q/N)-rich prion-like domains differ in their susceptibility to detection and degradation by this system. Here, we expand upon this work by examining whether the features controlling the degradation of our model prion-like domains generalize broadly to G-rich and Q/N-rich domains. Experimentally, native yeast G-rich domains in isolation are sensitive to the degradation-promoting effects of hydrophobic residues, whereas native Q/N-rich domains completely resist these effects and tend to aggregate instead. Bioinformatic analyses indicate that native G-rich domains from yeast and humans tend to avoid degradation-promoting features, suggesting that the proteostasis network may act as a form of selection at the molecular level that constrains the sequence space accessible to G-rich domains. However, the sensitivity or resistance of G-rich and Q/N-rich domains, respectively, was not always preserved in their native protein contexts, highlighting that proteins can evolve other sequence features to overcome the intrinsic sensitivity of some LCDs to degradation. 
    more » « less
  5. The Ubiquitin-proteasome system (UPS) is the canonical pathway for protein degradation in eukaryotic cells. Green fluorescent protein (GFP) is frequently used as a reporter in proteasomal degradation assays. However, there are multiple variants of GFP in use, and these variants have different intrinsic stabilities. Further, there are multiple means by which substrates are targeted to the proteasome, and these differences could also affect the proteasome’s ability to unfold and degrade substrates. Herein we investigate how the fate of GFP variants of differing intrinsic stabilities is determined by the mode of targeting to the proteasome. We compared two targeting systems: linear Ub 4 degrons and the UBL domain from yeast Rad23, both of which are commonly used in degradation experiments.  Surprisingly, the UBL degron allows for degradation of the most stable sGFP-containing substrates, while the Ub 4 degron does not. Destabilizing the GFP by circular permutation allows degradation with either targeting signal, indicating that domain stability and mode of targeting combine to determine substrate fate. Difficult-to-unfold substrates are released and re-engaged multiple times, with removal of the degradation initiation region providing an alternative clipping pathway that precludes unfolding and degradation; the UBL degron favors degradation of even difficult-to-unfold substrates while the Ub 4 degron favors clipping. Finally, we show that the ubiquitin receptor Rpn13 is primarily responsible for the enhanced ability of the proteasome to degrade stable UBL-tagged substrates. Our results indicate that the choice of targeting method and reporter protein are critical to the design of protein degradation experiments. 
    more » « less