skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-Agent Meta-Reinforcement Learning: Sharper Convergence Rates with Task Similarity
Multi-agent reinforcement learning (MARL) has primarily focused on solving a single task in isolation, while in practice the environment is often evolving, leaving many related tasks to be solved. In this paper, we investigate the benefits of meta-learning in solving multiple MARL tasks collectively. We establish the first line of theoretical results for meta-learning in a wide range of fundamental MARL settings, including learning Nash equilibria in two-player zero-sum Markov games and Markov potential games, as well as learning coarse correlated equilibria in general-sum Markov games. Under natural notions of task similarity, we show that meta-learning achieves provable sharper convergence to various game-theoretical solution concepts than learning each task separately. As an important intermediate step, we develop multiple MARL algorithms with initialization-dependent convergence guarantees. Such algorithms integrate optimistic policy mirror descents with stage-based value updates, and their refined convergence guarantees (nearly) recover the best known results even when a good initialization is unknown. To our best knowledge, such results are also new and might be of independent interest. We further provide numerical simulations to corroborate our theoretical findings.  more » « less
Award ID(s):
2029049
PAR ID:
10546464
Author(s) / Creator(s):
; ; ; ; ; ;
Corporate Creator(s):
Editor(s):
Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S
Publisher / Repository:
NeurIPS
Date Published:
Edition / Version:
1
Volume:
1
Issue:
1
ISBN:
9781713899921
Subject(s) / Keyword(s):
multi-agent reinforcement learning, convergence, meta-learning
Format(s):
Medium: X Size: 284 kb Other: pdf
Size(s):
284 kb
Location:
New Orleans, LA
Sponsoring Org:
National Science Foundation
More Like this
  1. Most of the literature on learning in games has focused on the restrictive setting where the underlying repeated game does not change over time. Much less is known about the convergence of no-regret learning algorithms in dynamic multiagent settings. In this paper, we characterize the convergence of optimistic gradient descent (OGD) in time-varying games. Our framework yields sharp convergence bounds for the equilibrium gap of OGD in zero-sum games parameterized on natural variation measures of the sequence of games, subsuming known results for static games. Furthermore, we establish improved second-order variation bounds under strong convexity-concavity, as long as each game is repeated multiple times. Our results also extend to time-varying general-sum multi-player games via a bilinear formulation of correlated equilibria, which has novel implications for meta-learning and for obtaining refined variation-dependent regret bounds, addressing questions left open in prior papers. Finally, we leverage our framework to also provide new insights on dynamic regret guarantees in static games. 1 
    more » « less
  2. Function approximation (FA) has been a critical component in solving large zero-sum games. Yet, little attention has been given towards FA in solving general-sum extensive-form games, despite them being widely regarded as being computationally more challenging than their fully competitive or cooperative counterparts. A key challenge is that for many equilibria in general-sum games, no simple analogue to the state value function used in Markov Decision Processes and zero-sum games exists. In this paper, we propose learning the Enforceable Payoff Frontier (EPF)---a generalization of the state value function for general-sum games. We approximate the optimal Stackelberg extensive-form correlated equilibrium by representing EPFs with neural networks and training them by using appropriate backup operations and loss functions. This is the first method that applies FA to the Stackelberg setting, allowing us to scale to much larger games while still enjoying performance guarantees based on FA error. Additionally, our proposed method guarantees incentive compatibility and is easy to evaluate without having to depend on self-play or approximate best-response oracles. 
    more » « less
  3. Policy gradient methods enjoy strong practical performance in numerous tasks in reinforcement learning. Their theoretical understanding in multiagent settings, however, remains limited, especially beyond two-player competitive and potential Markov games. In this paper, we develop a new framework to characterize optimistic policy gradient methods in multi-player Markov games with a single controller. Specifically, under the further assumption that the game exhibits an equilibrium collapse, in that the marginals of coarse correlated equilibria (CCE) induce Nash equilibria (NE), we show convergence to stationary ϵ-NE in O(1/ϵ2) iterations, where O(⋅) suppresses polynomial factors in the natural parameters of the game. Such an equilibrium collapse is well-known to manifest itself in two-player zero-sum Markov games, but also occurs even in a class of multi-player Markov games with separable interactions, as established by recent work. As a result, we bypass known complexity barriers for computing stationary NE when either of our assumptions fails. Our approach relies on a natural generalization of the classical Minty property that we introduce, which we anticipate to have further applications beyond Markov games. 
    more » « less
  4. Andreas Krause, Emma Brunskill (Ed.)
    Executing actions in a correlated manner is a common strategy for human coordination that often leads to better cooperation, which is also potentially beneficial for cooperative multi-agent reinforcement learning (MARL). However, the recent success of MARL relies heavily on the convenient paradigm of purely decentralized execution, where there is no action correlation among agents for scalability considerations. In this work, we introduce a Bayesian network to inaugurate correlations between agents’ action selections in their joint policy. Theoretically, we establish a theoretical justification for why action dependencies are beneficial by deriving the multi-agent policy gradient formula under such a Bayesian network joint policy and proving its global convergence to Nash equilibria under tabular softmax policy parameterization in cooperative Markov games. Further, by equipping existing MARL algorithms with a recent method of differentiable directed acyclic graphs (DAGs), we develop practical algorithms to learn the context-aware Bayesian network policies in scenarios with partial observability and various difficulty. We also dynamically decrease the sparsity of the learned DAG throughout the training process, which leads to weakly or even purely independent policies for decentralized execution. Empirical results on a range of MARL benchmarks show the benefits of our approach. 
    more » « less
  5. Multi-agent reinforcement learning (MARL) lies at the heart of a plethora of applications involving the interaction of a group of agents in a shared unknown environment. A prominent framework for studying MARL is Markov games, with the goal of finding various notions of equilibria in a sample-efficient manner, such as the Nash equilibrium (NE) and the coarse correlated equilibrium (CCE). However, existing sample-efficient approaches either require tailored uncertainty estimation under function approximation, or careful coordination of the players. In this paper, we propose a novel model-based algorithm, called VMG, that incentivizes exploration via biasing the empirical estimate of the model parameters towards those with a higher collective best-response values of all the players when fixing the other players’ policies, thus encouraging the policy to deviate from its current equilibrium for more exploration. VMG is oblivious to different forms of function approximation, and permits simultaneous and uncoupled policy updates of all players. Theoretically, we also establish that VMG achieves a near-optimal regret for finding both the NEs of two-player zero-sum Markov games and CCEs of multi-player general-sum Markov games under linear function approximation in an online environment, which nearly match their counterparts with sophisticated uncertainty quantification. 
    more » « less