skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Optimistic Policy Gradient in Multi-Player Markov Games with a Single Controller: Convergence Beyond the Minty Property
Policy gradient methods enjoy strong practical performance in numerous tasks in reinforcement learning. Their theoretical understanding in multiagent settings, however, remains limited, especially beyond two-player competitive and potential Markov games. In this paper, we develop a new framework to characterize optimistic policy gradient methods in multi-player Markov games with a single controller. Specifically, under the further assumption that the game exhibits an equilibrium collapse, in that the marginals of coarse correlated equilibria (CCE) induce Nash equilibria (NE), we show convergence to stationary ϵ-NE in O(1/ϵ2) iterations, where O(⋅) suppresses polynomial factors in the natural parameters of the game. Such an equilibrium collapse is well-known to manifest itself in two-player zero-sum Markov games, but also occurs even in a class of multi-player Markov games with separable interactions, as established by recent work. As a result, we bypass known complexity barriers for computing stationary NE when either of our assumptions fails. Our approach relies on a natural generalization of the classical Minty property that we introduce, which we anticipate to have further applications beyond Markov games.  more » « less
Award ID(s):
1901403
PAR ID:
10549996
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AAAI24
Date Published:
Format(s):
Medium: X
Location:
Vancouver, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. Markov games model interactions among multiple players in a stochastic, dynamic environment. Each player in a Markov game maximizes its expected total discounted reward, which depends upon the policies of the other players. We formulate a class of Markov games, termed affine Markov games, where an affine reward function couples the players’ actions. We introduce a novel solution concept, the soft-Bellman equilibrium, where each player is boundedly rational and chooses a soft-Bellman policy rather than a purely rational policy as in the well-known Nash equilibrium concept. We provide conditions for the existence and uniqueness of the soft-Bellman equilibrium and propose a nonlinear least-squares algorithm to compute such an equilibrium in the forward problem. We then solve the inverse game problem of inferring the players’ reward parameters from observed state-action trajectories via a projected-gradient algorithm. Experiments in a predator-prey OpenAI Gym environment show that the reward parameters inferred by the proposed algorithm outper- form those inferred by a baseline algorithm: they reduce the Kullback-Leibler divergence between the equilibrium policies and observed policies by at least two orders of magnitude. 
    more » « less
  2. Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S (Ed.)
    Multi-agent reinforcement learning (MARL) has primarily focused on solving a single task in isolation, while in practice the environment is often evolving, leaving many related tasks to be solved. In this paper, we investigate the benefits of meta-learning in solving multiple MARL tasks collectively. We establish the first line of theoretical results for meta-learning in a wide range of fundamental MARL settings, including learning Nash equilibria in two-player zero-sum Markov games and Markov potential games, as well as learning coarse correlated equilibria in general-sum Markov games. Under natural notions of task similarity, we show that meta-learning achieves provable sharper convergence to various game-theoretical solution concepts than learning each task separately. As an important intermediate step, we develop multiple MARL algorithms with initialization-dependent convergence guarantees. Such algorithms integrate optimistic policy mirror descents with stage-based value updates, and their refined convergence guarantees (nearly) recover the best known results even when a good initialization is unknown. To our best knowledge, such results are also new and might be of independent interest. We further provide numerical simulations to corroborate our theoretical findings. 
    more » « less
  3. Tauman_Kalai, Yael (Ed.)
    We study the complexity of computing stationary Nash equilibrium (NE) in n-player infinite-horizon general-sum stochastic games. We focus on the problem of computing NE in such stochastic games when each player is restricted to choosing a stationary policy and rewards are discounted. First, we prove that computing such NE is in PPAD (in addition to clearly being PPAD-hard). Second, we consider turn-based specializations of such games where at each state there is at most a single player that can take actions and show that these (seemingly-simpler) games remain PPAD-hard. Third, we show that under further structural assumptions on the rewards computing NE in such turn-based games is possible in polynomial time. Towards achieving these results we establish structural facts about stochastic games of broader utility, including monotonicity of utilities under single-state single-action changes and reductions to settings where each player controls a single state. 
    more » « less
  4. We investigate learning the equilibria in non-stationary multi-agent systems and address the challenges that differentiate multi-agent learning from single-agent learning. Specifically, we focus on games with bandit feedback, where testing an equilibrium can result in substantial regret even when the gap to be tested is small, and the existence of multiple optimal solutions (equilibria) in stationary games poses extra challenges. To overcome these obstacles, we propose a versatile black-box approach applicable to a broad spectrum of problems, such as general-sum games, potential games, and Markov games, when equipped with appropriate learning and testing oracles for stationary environments. Our algorithms can achieve O(∆^1/4 T^3/4) regret when the degree of nonstationarity, as measured by total variation ∆, is known, and O(∆^1/5 T^4/5) regret when ∆ is unknown, where T is the number of rounds. Meanwhile, our algorithm inherits the favorable dependence on number of agents from the oracles. As a side contribution that may be independent of interest, we show how to test for various types of equilibria by a black-box reduction to single-agent learning, which includes Nash equilibria, correlated equilibria, and coarse correlated equilibria. 
    more » « less
  5. Characterizing the performance of no-regret dynamics in multi-player games is a foundational problem at the interface of online learning and game theory. Recent results have revealed that when all players adopt specific learning algorithms, it is possible to improve exponentially over what is predicted by the overly pessimistic no-regret framework in the traditional adversarial regime, thereby leading to faster convergence to the set of coarse correlated equilibria (CCE) – a standard game-theoretic equilibrium concept. Yet, despite considerable recent progress, the fundamental complexity barriers for learning in normal- and extensive-form games are poorly understood. In this paper, we make a step towards closing this gap by first showing that – barring major complexity breakthroughs – any polynomial-time learning algorithms in extensive-form games need at least 2log1/2−o(1) |T | iterations for the average regret to reach below even an absolute constant, where |T | is the number of nodes in the game. This establishes a superpolynomial separation between no-regret learning in normal- and extensive-form games, as in the former class a logarithmic number of iterations suffices to achieve constant average regret. Furthermore, our results imply that algorithms such as multiplicative weights update, as well as its optimistic counterpart, require at least 2(log logm)1/2−o(1) iterations to attain an O(1)-CCE in m-action normal-form games under any parameterization. These are the first non-trivial – and dimension-dependent – lower bounds in that setting for the most well-studied algorithms in the literature. From a technical standpoint, we follow a beautiful connection recently made by Foster, Golowich, and Kakade (ICML ’23) between sparse CCE and Nash equilibria in the context of Markov games. Consequently, our lower bounds rule out polynomial-time algorithms well beyond the traditional online learning framework, capturing techniques commonly used for accelerating centralized equilibrium computation. 
    more » « less