In this paper, we study the problem of optimal data collection for policy evaluation in linear bandits. In policy evaluation, we are given a \textit{target} policy and asked to estimate the expected reward it will obtain when executed in a multi-armed bandit environment. Our work is the first work that focuses on such an optimal data collection strategy for policy evaluation involving heteroscedastic reward noise in the linear bandit setting. We first formulate an optimal design for weighted least squares estimates in the heteroscedastic linear bandit setting with the knowledge of noise variances. This design minimizes the mean squared error (MSE) of the estimated value of the target policy and is termed the oracle design. Since the noise variance is typically unknown, we then introduce a novel algorithm, SPEED (\textbf{S}tructured \textbf{P}olicy \textbf{E}valuation \textbf{E}xperimental \textbf{D}esign), that tracks the oracle design and derive its regret with respect to the oracle design. We show that regret scales as 𝑂˜(𝑑3𝑛−3/2) and prove a matching lower bound of Ω(𝑑2𝑛−3/2) . Finally, we evaluate SPEED on a set of policy evaluation tasks and demonstrate that it achieves MSE comparable to an optimal oracle and much lower than simply running the target policy.
more »
« less
Noise-Adaptive Confidence Sets for Linear Bandits and Application to Bayesian Optimization
Adapting to a priori unknown noise level is a very important but challenging problem in sequential decision-making as efficient exploration typically requires knowledge of the noise level, which is often loosely specified. We report significant progress in addressing this issue in linear bandits in two respects. First, we propose a novel confidence set that is ’semi-adaptive’ to the unknown sub-Gaussian parameter $$\sigma_*^2$$ in the sense that the (normalized) confidence width scales with $$\sqrt{d\sigma_*^2 + \sigma_0^2}$$ where $$d$$ is the dimension and $$\sigma_0^2$$ is the specified sub-Gaussian parameter (known) that can be much larger than $$\sigma_*^2$$. This is a significant improvement over $$\sqrt{d\sigma_0^2}$$ of the standard confidence set of Abbasi-Yadkori et al. (2011), especially when $$d$$ is large. We show that this leads to an improved regret bound in linear bandits. Second, for bounded rewards, we propose a novel variance-adaptive confidence set that has a much improved numerical performance upon prior art. We then apply this confidence set to develop, as we claim, the first practical variance-adaptive linear bandit algorithm via an optimistic approach, which is enabled by our novel regret analysis technique. Both of our confidence sets rely critically on ‘regret equality’ from online learning. Our empirical evaluation in Bayesian optimization tasks shows that our algorithms demonstrate better or comparable performance compared to existing methods.
more »
« less
- Award ID(s):
- 2327013
- PAR ID:
- 10546615
- Publisher / Repository:
- Proceedings of Machine Learning Research
- Date Published:
- Volume:
- 235
- ISSN:
- 2640-3498
- Subject(s) / Keyword(s):
- linear bandits noise adaptivity bayesian optimization
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
One of the primary challenges in large-scale distributed learning stems from stringent communication constraints. While several recent works address this challenge for static optimization problems, sequential decision-making under uncertainty has remained much less explored in this regard. Motivated by this gap, we introduce a new linear stochastic bandit formulation over a bit-constrained channel. Specifically, in our setup, an agent interacting with an environment transmits encoded estimates of an unknown model parameter to a server over a communication channel of finite capacity. The goal of the server is to take actions based on these estimates to minimize cumulative regret. To this end, we develop a novel and general algorithmic framework that hinges on two main components: (i) an adaptive encoding mechanism that exploits statistical concentration bounds, and (ii) a decision-making principle based on confidence sets that account for encoding errors. As our main result, we prove that when the unknown model is d-dimensional, a channel capacity of O(d) bits suffices to achieve order-optimal regret. We also establish that for the simpler unstructured multi-armed bandit problem, 1 bit channel capacity is sufficient for achieving optimal regret bounds. Keywords: Linear Bandits, Distributed Learning, Communication Constraintsmore » « less
-
Dueling bandits is a prominent framework for decision-making involving preferential feedback, a valuable feature that fits various applications involving human interaction, such as ranking, information retrieval, and recommendation systems. While substantial efforts have been made to minimize the cumulative regret in dueling bandits, a notable gap in the current research is the absence of regret bounds that account for the inherent uncertainty in pairwise comparisons between the dueling arms. Intuitively, greater uncertainty suggests a higher level of difficulty in the problem. To bridge this gap, this paper studies the problem of contextual dueling bandits, where the binary comparison of dueling arms is generated from a generalized linear model (GLM). We propose a new SupLinUCB-type algorithm that enjoys computational efficiency and a variance-aware regret bound $$\tilde O\big(d\sqrt{\sum_{t=1}^T\sigma_t^2} + d\big)$$, where $$\sigma_t$$ is the variance of the pairwise comparison in round $$t$$, $$d$$ is the dimension of the context vectors, and $$T$$ is the time horizon. Our regret bound naturally aligns with the intuitive expectation in scenarios where the comparison is deterministic, the algorithm only suffers from an $$\tilde O(d)$$ regret. We perform empirical experiments on synthetic data to confirm the advantage of our method over previous variance-agnostic algorithms.more » « less
-
One of the primary challenges in large-scale distributed learning stems from stringent communication constraints. While several recent works address this challenge for static optimization problems, sequential decision-making under uncertainty has remained much less explored in this regard. Motivated by this gap, we introduce a new linear stochastic bandit formulation over a bit-constrained channel. Specifically, in our setup, an agent interacting with an environment transmits encoded estimates of an unknown model parameter to a server over a communication channel of finite capacity. The goal of the server is to take actions based on these estimates to minimize cumulative regret. To this end, we develop a novel and general algorithmic framework that hinges on two main components: (i) an adaptive encoding mechanism that exploits statistical concentration bounds, and (ii) a decision-making principle based on confidence sets that account for encoding errors. As our main result, we prove that when the unknown model is d-dimensional, a channel capacity of O(d) bits suffices to achieve order-optimal regret. We also establish that for the simpler unstructured multi-armed bandit problem, 1 bit channel capacity is sufficient for achieving optimal regret bounds.more » « less
-
Banerjee, Arindam; Fukumizu, Kenji (Ed.)We study a constrained contextual linear bandit setting, where the goal of the agent is to produce a sequence of policies, whose expected cumulative reward over the course of multiple rounds is maximum, and each one of them has an expected cost below a certain threshold. We propose an upper-confidence bound algorithm for this problem, called optimistic pessimistic linear bandit (OPLB), and prove a sublinear bound on its regret that is inversely proportional to the difference between the constraint threshold and the cost of a known feasible action. Our algorithm balances exploration and constraint satisfaction using a novel idea that scales the radii of the reward and cost confidence sets with different scaling factors. We further specialize our results to multi-armed bandits and propose a computationally efficient algorithm for this setting and prove a a regret bound that is better than simply casting multi-armed bandits as an instance of linear bandits and using the regret bound of OPLB. We also prove a lower-bound for the problem studied in the paper and provide simulations to validate our theoretical results. Finally, we show how our algorithm and analysis can be extended to multiple constraints and to the case when the cost of the feasible action is unknown.more » « less
An official website of the United States government

