skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stochastic Bandits with Linear Constraints
We study a constrained contextual linear bandit setting, where the goal of the agent is to produce a sequence of policies, whose expected cumulative reward over the course of multiple rounds is maximum, and each one of them has an expected cost below a certain threshold. We propose an upper-confidence bound algorithm for this problem, called optimistic pessimistic linear bandit (OPLB), and prove a sublinear bound on its regret that is inversely proportional to the difference between the constraint threshold and the cost of a known feasible action. Our algorithm balances exploration and constraint satisfaction using a novel idea that scales the radii of the reward and cost confidence sets with different scaling factors. We further specialize our results to multi-armed bandits and propose a computationally efficient algorithm for this setting and prove a a regret bound that is better than simply casting multi-armed bandits as an instance of linear bandits and using the regret bound of OPLB. We also prove a lower-bound for the problem studied in the paper and provide simulations to validate our theoretical results. Finally, we show how our algorithm and analysis can be extended to multiple constraints and to the case when the cost of the feasible action is unknown.  more » « less
Award ID(s):
2023505
PAR ID:
10273286
Author(s) / Creator(s):
; ; ;
Editor(s):
Banerjee, Arindam; Fukumizu, Kenji
Date Published:
Journal Name:
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics
Volume:
130
Page Range / eLocation ID:
2827-2835
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate the problem of combinatorial multi-armed bandits with stochastic submodular (in expectation) rewards and full-bandit feedback, where no extra information other than the reward of selected action at each time step is observed. We propose a simple algorithm, Explore-Then-Commit Greedy (ETCG) and prove that it achieves a -regret upper bound of for a horizon , number of base elements , and cardinality constraint . We also show in experiments with synthetic and real-world data that the ETCG empirically outperforms other full-bandit methods. 
    more » « less
  2. We consider the bandit problem of selecting K out of N arms at each time step. The joint reward can be a non-linear function of the rewards of the selected individual arms. The direct use of a multi-armed bandit algorithm requires choosing among all possible combinations, making the action space large. To simplify the problem, existing works on combinatorial bandits typically assume feedback as a linear function of individual rewards. In this paper, we prove the lower bound for top-K subset selection with bandit feedback with possibly correlated rewards. We present a novel algorithm for the combinatorial setting without using individual arm feedback or requiring linearity of the reward function. Additionally, our algorithm works on correlated rewards of individual arms. Our algorithm, aDaptive Accept RejecT (DART), sequentially finds good arms and eliminates bad arms based on confidence bounds. DART is computationally efficient and uses storage linear in N. Further, DART achieves a regret bound of Õ(K√KNT) for a time horizon T, which matches the lower bound in bandit feedback up to a factor of √log 2NT. When applied to the problem of cross-selling optimization and maximizing the mean of individual rewards, the performance of the proposed algorithm surpasses that of state-of-the-art algorithms. We also show that DART significantly outperforms existing methods for both linear and non-linear joint reward environments. 
    more » « less
  3. Cussens, James; Zhang, Kun (Ed.)
    We investigate the problem of combinatorial multi-armed bandits with stochastic submodular (in expectation) rewards and full-bandit feedback, where no extra information other than the reward of selected action at each time step $$t$$ is observed. We propose a simple algorithm, Explore-Then-Commit Greedy (ETCG) and prove that it achieves a $(1-1/e)$-regret upper bound of $$\mathcal{O}(n^\frac{1}{3}k^\frac{4}{3}T^\frac{2}{3}\log(T)^\frac{1}{2})$$ for a horizon $$T$$, number of base elements $$n$$, and cardinality constraint $$k$$. We also show in experiments with synthetic and real-world data that the ETCG empirically outperforms other full-bandit methods. 
    more » « less
  4. We study a regret minimization problem with the existence of multiple best/near-optimal arms in the multi-armed bandit setting. We consider the case when the number of arms/actions is comparable or much larger than the time horizon, and make no assumptions about the structure of the bandit instance. Our goal is to design algorithms that can automatically adapt to the unknown hardness of the problem, i.e., the number of best arms. Our setting captures many modern applications of bandit algorithms where the action space is enormous and the information about the underlying instance/structure is unavailable. We first propose an adaptive algorithm that is agnostic to the hardness level and theoretically derive its regret bound. We then prove a lower bound for our problem setting, which indicates: (1) no algorithm can be minimax optimal simultaneously over all hardness levels; and (2) our algorithm achieves a rate function that is Pareto optimal. With additional knowledge of the expected reward of the best arm, we propose another adaptive algorithm that is minimax optimal, up to polylog factors, over all hardness levels. Experimental results confirm our theoretical guarantees and show advantages of our algorithms over the previous state-of-the-art. 
    more » « less
  5. In this paper, we study the problem of optimal data collection for policy evaluation in linear bandits. In policy evaluation, we are given a \textit{target} policy and asked to estimate the expected reward it will obtain when executed in a multi-armed bandit environment. Our work is the first work that focuses on such an optimal data collection strategy for policy evaluation involving heteroscedastic reward noise in the linear bandit setting. We first formulate an optimal design for weighted least squares estimates in the heteroscedastic linear bandit setting with the knowledge of noise variances. This design minimizes the mean squared error (MSE) of the estimated value of the target policy and is termed the oracle design. Since the noise variance is typically unknown, we then introduce a novel algorithm, SPEED (\textbf{S}tructured \textbf{P}olicy \textbf{E}valuation \textbf{E}xperimental \textbf{D}esign), that tracks the oracle design and derive its regret with respect to the oracle design. We show that regret scales as 𝑂˜(𝑑3𝑛−3/2) and prove a matching lower bound of Ω(𝑑2𝑛−3/2) . Finally, we evaluate SPEED on a set of policy evaluation tasks and demonstrate that it achieves MSE comparable to an optimal oracle and much lower than simply running the target policy. 
    more » « less