skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic gain and frequency comb formation in exceptional-point lasers
Abstract Exceptional points (EPs)—singularities in the parameter space of non-Hermitian systems where two nearby eigenmodes coalesce—feature unique properties with applications such as sensitivity enhancement and chiral emission. Existing realizations of EP lasers operate with static populations in the gain medium. By analyzing the full-wave Maxwell–Bloch equations, here we show that in a laser operating sufficiently close to an EP, the nonlinear gain will spontaneously induce a multi-spectral multi-modal instability above a pump threshold, which initiates an oscillating population inversion and generates a frequency comb. The efficiency of comb generation is enhanced by both the spectral degeneracy and the spatial coalescence of modes near an EP. Such an “EP comb” has a widely tunable repetition rate, self-starts without external modulators or a continuous-wave pump, and can be realized with an ultra-compact footprint. We develop an exact solution of the Maxwell–Bloch equations with an oscillating inversion, describing all spatiotemporal properties of the EP comb as a limit cycle. We numerically illustrate this phenomenon in a 5-μm-long gain-loss coupled AlGaAs cavity and adjust the EP comb repetition rate from 20 to 27 GHz. This work provides a rigorous spatiotemporal description of the rich laser behaviors that arise from the interplay between the non-Hermiticity, nonlinearity, and dynamics of a gain medium.  more » « less
Award ID(s):
2146021
PAR ID:
10546835
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Frequency-comb-based multidimensional coherent spectroscopy is a powerful optical method for studying nonlinear optical properties of samples with narrow resonances. It enables the measurement of multidimensional coherent spectra rapidly and with high spectral resolution. However, for some samples (especially cold atoms and molecules) the dephasing times are longer than the repetition periods of the excitation lasers and hence the nonlinear signals generated in the sample by the subsequent laser pulses will interfere with each other. Here we investigate this behavior and show its effect on multidimensional coherent spectra by solving the optical Bloch equations. *The material is based upon work supported by the National Science Foundation under Grant No. [1904704] 
    more » « less
  2. Electro-optical modulation of a continuous wave laser is a highly stable way to generate frequency combs, gaining popularity in telecommunication and spectroscopic applications. These combs are generated by modulating non-linear electro-optic crystals with radio frequencies, creating equally spaced side-bands centered around the single-frequency seed laser. Electro-optic frequency comb architectures often choose between optical bandwidth (cascaded GHz combs) or higher mode density (chirped RF generation). This work demonstrates an electro-optic frequency comb with > 120 GHz of bandwidth and an 80 MHz repetition rate. The comb has three cascaded electro-optic modulators driven at sequentially lower harmonics, the last megahertz modulation dictating the repetition rate. This architecture can modulate at any individual harmonic and repetition rate without changes to the components. This comb can be used in any applications where a stable and tunable repetition rate is needed. 
    more » « less
  3. Harmonic comb states have proven to be ubiquitous in mid-IR quantum cascade lasers. We report here on robust, pure, self-starting harmonic mode locking in Copper-based double-metal THz quantum cascade lasers. Different harmonic orders can be excited in the same laser cavity depending on the pumping condition, and stable harmonic combs spanning more than 600 GHz at 80 K are reported. Such devices can be RF injected, and the free running coherence is assessed by means of a self-mixing technique performed at 50 GHz. A theoretical model based on Maxwell-Bloch equations including an asymmetry in the gain profile is used to interpret the data. 
    more » « less
  4. We show that exceptional points and the nonlinearity of a laser can induce an oscillating population inversion, creating a frequency comb. We develop anab-initiotheory describing all steady-state properties of such lasers. 
    more » « less
  5. The fiber single-cavity dual-comb laser (SCDCL) is an emerging light-source architecture that opens up the possibility for low-complexity dual-comb pump-probe measurements. However, the fundamental trade-off between measurement speed and time resolution remains a hurdle for the widespread use of fiber SCDCLs in dual-comb pump-probe measurements. In this paper, we break this fundamental trade-off by devising an all-optical dynamic repetition rate difference (Δfrep) modulation technique. We demonstrate the dynamic Δfrepmodulation in a modified version of the recently developed counterpropagating all-normal dispersion (CANDi) fiber laser. We verify that our all-optical dynamic Δfrepmodulation technique does not introduce excessive relative timing jitter. In addition, the dynamic modulation mechanism is studied and validated both theoretically and experimentally. As a proof-of-principle experiment, we apply this so-called dynamic CANDi (DCANDi) fiber laser to measure the relaxation time of a semiconductor saturable absorber mirror, achieving a measurement speed and duty cycle enhancement factor of 143. DCANDi fiber laser is a promising light source for low-complexity, high-speed, high-sensitivity ultrafast dual-comb pump-probe measurements. 
    more » « less