skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying the clusterness and trajectoriness of single-cell RNA-seq data
Among existing computational algorithms for single-cell RNA-seq analysis, clustering and trajectory inference are two major types of analysis that are routinely applied. For a given dataset, clustering and trajectory inference can generate vastly different visualizations that lead to very different interpretations of the data. To address this issue, we propose multiple scores to quantify the “clusterness” and “trajectoriness” of single-cell RNA-seq data, in other words, whether the data looks like a collection of distinct clusters or a continuum of progression trajectory. The scores we introduce are based on pairwise distance distribution, persistent homology, vector magnitude, Ripley’s K, and degrees of connectivity. Using simulated datasets, we demonstrate that the proposed scores are able to effectively differentiate between cluster-like data and trajectory-like data. Using real single-cell RNA-seq datasets, we demonstrate the scores can serve as indicators of whether clustering analysis or trajectory inference is a more appropriate choice for biological interpretation of the data.  more » « less
Award ID(s):
2007029
PAR ID:
10546866
Author(s) / Creator(s):
;
Editor(s):
Zhang, Shihua
Publisher / Repository:
PLOS
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
20
Issue:
2
ISSN:
1553-7358
Page Range / eLocation ID:
e1011866
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Numerous single‐cell transcriptomic datasets from identical tissues or cell lines are generated from different laboratories or single‐cell RNA sequencing (scRNA‐seq) protocols. The denoising of these datasets to eliminate batch effects is crucial for data integration, ensuring accurate interpretation and comprehensive analysis of biological questions. Although many scRNA‐seq data integration methods exist, most are inefficient and/or not conducive to downstream analysis. Here, DeepBID, a novel deep learning‐based method for batch effect correction, non‐linear dimensionality reduction, embedding, and cell clustering concurrently, is introduced. DeepBID utilizes a negative binomial‐based autoencoder with dual Kullback–Leibler divergence loss functions, aligning cell points from different batches within a consistent low‐dimensional latent space and progressively mitigating batch effects through iterative clustering. Extensive validation on multiple‐batch scRNA‐seq datasets demonstrates that DeepBID surpasses existing tools in removing batch effects and achieving superior clustering accuracy. When integrating multiple scRNA‐seq datasets from patients with Alzheimer's disease, DeepBID significantly improves cell clustering, effectively annotating unidentified cells, and detecting cell‐specific differentially expressed genes. 
    more » « less
  2. Abstract MotivationGene set enrichment (GSE) analysis allows for an interpretation of gene expression through pre-defined gene set databases and is a critical step in understanding different phenotypes. With the rapid development of single-cell RNA sequencing (scRNA-seq) technology, GSE analysis can be performed on fine-grained gene expression data to gain a nuanced understanding of phenotypes of interest. However, with the cellular heterogeneity in single-cell gene profiles, current statistical GSE analysis methods sometimes fail to identify enriched gene sets. Meanwhile, deep learning has gained traction in applications like clustering and trajectory inference in single-cell studies due to its prowess in capturing complex data patterns. However, its use in GSE analysis remains limited, due to interpretability challenges. ResultsIn this paper, we present DeepGSEA, an explainable deep gene set enrichment analysis approach which leverages the expressiveness of interpretable, prototype-based neural networks to provide an in-depth analysis of GSE. DeepGSEA learns the ability to capture GSE information through our designed classification tasks, and significance tests can be performed on each gene set, enabling the identification of enriched sets. The underlying distribution of a gene set learned by DeepGSEA can be explicitly visualized using the encoded cell and cellular prototype embeddings. We demonstrate the performance of DeepGSEA over commonly used GSE analysis methods by examining their sensitivity and specificity with four simulation studies. In addition, we test our model on three real scRNA-seq datasets and illustrate the interpretability of DeepGSEA by showing how its results can be explained. Availability and implementationhttps://github.com/Teddy-XiongGZ/DeepGSEA 
    more » « less
  3. Intermediate cell states (ICSs) during the epithelial–mesenchymal transition (EMT) are emerging as a driving force of cancer invasion and metastasis. ICSs typically exhibit hybrid epithelial/mesenchymal characteristics as well as cancer stem cell (CSC) traits including proliferation and drug resistance. Here, we analyze several single-cell RNA-seq (scRNA-seq) datasets to investigate the relation between several axes of cancer progression including EMT, CSC traits, and cell–cell signaling. To accomplish this task, we integrate computational methods for clustering and trajectory inference with analysis of EMT gene signatures, CSC markers, and cell–cell signaling pathways, and highlight conserved and specific processes across the datasets. Our analysis reveals that “standard” measures of pluripotency often used in developmental contexts do not necessarily correlate with EMT progression and expression of CSC-related markers. Conversely, an EMT circuit energy that quantifies the co-expression of epithelial and mesenchymal genes consistently increases along EMT trajectories across different cancer types and anatomical locations. Moreover, despite the high context specificity of signal transduction across different cell types, cells undergoing EMT always increased their potential to send and receive signals from other cells. 
    more » « less
  4. null (Ed.)
    Single cell RNA-sequencing (scRNA-seq) technology enables comprehensive transcriptomic profiling of thousands of cells with distinct phenotypic and physiological states in a complex tissue. Substantial efforts have been made to characterize single cells of distinct identities from scRNA-seq data, including various cell clustering techniques. While existing approaches can handle single cells in terms of different cell (sub)types at a high resolution, identification of the functional variability within the same cell type remains unsolved. In addition, there is a lack of robust method to handle the inter-subject variation that often brings severe confounding effects for the functional clustering of single cells. In this study, we developed a novel data denoising and cell clustering approach, namely CIBS, to provide biologically explainable functional classification for scRNA-seq data. CIBS is based on a systems biology model of transcriptional regulation that assumes a multi-modality distribution of the cells’ activation status, and it utilizes a Boolean matrix factorization approach on the discretized expression status to robustly derive functional modules. CIBS is empowered by a novel fast Boolean Matrix Factorization method, namely PFAST, to increase the computational feasibility on large scale scRNA-seq data. Application of CIBS on two scRNA-seq datasets collected from cancer tumor micro-environment successfully identified subgroups of cancer cells with distinct expression patterns of epithelial-mesenchymal transition and extracellular matrix marker genes, which was not revealed by the existing cell clustering analysis tools. The identified cell groups were significantly associated with the clinically confirmed lymph-node invasion and metastasis events across different patients. Index Terms—Cell clustering analysis, Data denoising, Boolean matrix factorization, Cancer microenvirionment, Metastasis. 
    more » « less
  5. Abstract Single-cell RNA sequencing (scRNA-seq) is a widely used technique for characterizing individual cells and studying gene expression at the single-cell level. Clustering plays a vital role in grouping similar cells together for various downstream analyses. However, the high sparsity and dimensionality of large scRNA-seq data pose challenges to clustering performance. Although several deep learning-based clustering algorithms have been proposed, most existing clustering methods have limitations in capturing the precise distribution types of the data or fully utilizing the relationships between cells, leaving a considerable scope for improving the clustering performance, particularly in detecting rare cell populations from large scRNA-seq data. We introduce DeepScena, a novel single-cell hierarchical clustering tool that fully incorporates nonlinear dimension reduction, negative binomial-based convolutional autoencoder for data fitting, and a self-supervision model for cell similarity enhancement. In comprehensive evaluation using multiple large-scale scRNA-seq datasets, DeepScena consistently outperformed seven popular clustering tools in terms of accuracy. Notably, DeepScena exhibits high proficiency in identifying rare cell populations within large datasets that contain large numbers of clusters. When applied to scRNA-seq data of multiple myeloma cells, DeepScena successfully identified not only previously labeled large cell types but also subpopulations in CD14 monocytes, T cells and natural killer cells, respectively. 
    more » « less