skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Drivers’ Spatio-Temporal Attentional Distributions Are Influenced by Vehicle Dynamics and Displayed Point of View
ObjectiveThe aim of this study is to measure drivers’ attention to preview and their velocity and acceleration tracking error to evaluate two- and three-dimensional displays for following a winding roadway. BackgroundDisplay perturbation techniques and Fourier analysis of steering movements can be used to infer drivers’ spatio-temporal distribution of attention to preview. Fourier analysis of tracking error time histories provides measures of position, velocity, and acceleration error. MethodParticipants tracked a winding roadway with 1 s of preview in low-fidelity driving simulations. Position and rate-aided vehicle dynamics were paired with top-down and windshield displays of the roadway. ResultsFor both vehicle dynamics, tracking was smoother with the windshield display. This display emphasizes nearer preview positions and has a closer correspondence to the control-theoretic optimal attentional distributions for these tasks than the top-down display. This correspondence is interpreted as a form of stimulus–response compatibility. The position error and attentional signal-to-noise ratios did not differ between the two displays with position control, but with more complex rate-aided control much higher position error and much lower attentional signal-to-noise ratios occurred with the top-down display. ConclusionDisplay-driven influences on the distribution of attention may facilitate tracking with preview when they are similar to optimal attentional distributions derived from control theory. ApplicationDisplay perturbation techniques can be used to assess spatially distributed attention to evaluate displays and secondary tasks in the context of driving. This methodology can supplement eye movement measurements to determine what information is guiding drivers’ actions.  more » « less
Award ID(s):
1901632
PAR ID:
10546951
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Human Factors: The Journal of the Human Factors and Ergonomics Society
Volume:
63
Issue:
4
ISSN:
0018-7208
Format(s):
Medium: X Size: p. 578-591
Size(s):
p. 578-591
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Objective We controlled participants’ glance behavior while using head-down displays (HDDs) and head-up displays (HUDs) to isolate driving behavioral changes due to use of different display types across different driving environments. Background Recently, HUD technology has been incorporated into vehicles, allowing drivers to, in theory, gather display information without moving their eyes away from the road. Previous studies comparing the impact of HUDs with traditional displays on human performance show differences in both drivers’ visual attention and driving performance. Yet no studies have isolated glance from driving behaviors, which limits our ability to understand the cause of these differences and resulting impact on display design. Method We developed a novel method to control visual attention in a driving simulator. Twenty experienced drivers sustained visual attention to in-vehicle HDDs and HUDs while driving in both a simple straight and empty roadway environment and a more realistic driving environment that included traffic and turns. Results In the realistic environment, but not the simpler environment, we found evidence of differing driving behaviors between display conditions, even though participants’ glance behavior was similar. Conclusion Thus, the assumption that visual attention can be evaluated in the same way for different types of vehicle displays may be inaccurate. Differences between driving environments bring the validity of testing HUDs using simplistic driving environments into question. Application As we move toward the integration of HUD user interfaces into vehicles, it is important that we develop new, sensitive assessment methods to ensure HUD interfaces are indeed safe for driving. 
    more » « less
  2. Abstract People tend to employ suboptimal attention control strategies during visual search. Here we question why people are suboptimal, specifically investigating how knowledge of the optimal strategies and the time available to apply such strategies affect strategy use. We used the Adaptive Choice Visual Search (ACVS), a task designed to assess attentional control optimality. We used explicit strategy instructions to manipulate explicit strategy knowledge, and we used display previews to manipulate time to apply the strategies. In the first two experiments, the strategy instructions increased optimality. However, the preview manipulation did not significantly boost optimality for participants who did not receive strategy instruction. Finally, in Experiments 3A and 3B, we jointly manipulated preview and instruction with a larger sample size. Preview and instruction both produced significant main effects; furthermore, they interacted significantly, such that the beneficial effect of instructions emerged with greater preview time. Taken together, these results have important implications for understanding the strategic use of attentional control. Individuals with explicit knowledge of the optimal strategy are more likely to exploit relevant information in their visual environment, but only to the extent that they have the time to do so. 
    more » « less
  3. Due to the lack of information, current vehicle control systems generally assume that the road friction conditions ahead of a vehicle are unchanged relative to those at the vehicle's current position. This can result in dangerous situations if the friction is suddenly decreasing from the current situation, or overly conservative driving styles if the friction of the current situation is worse than the roadway ahead. However, with connectivity either to other vehicles, infrastructure, or cloud services, future vehicles may have access to upcoming roadway information; this is particularly valuable for planning velocity trajectories that consider the friction and geometry in the road path ahead. This paper introduces a method for planning longitudinal speed profiles for Connected and Autonomous Vehicles (CAVs) that have previewed information about path geometry and friction conditions. The novelty of this approach is to explicitly include consideration of the friction ellipse available along the intended path. The paper derives an analytical solution for certain preview cases that upper-bounds the allowable vehicle velocity profile while preventing departure from the friction ellipse. The results further define the relationship between a lower bound on friction, the path geometry, and minimum friction preview distance. This relationship is used to ensure the vehicle has sufficient time to take action for upcoming hazardous situations. The efficacy of the algorithm is demonstrated through an application case where a vehicle navigates a curving road with changing friction conditions, with results showing that, with sufficient preview, the vehicle could anticipate allowable and stable path keeping speed. 
    more » « less
  4. ObjectiveThis study examined the impact of monitoring instructions when using an automated driving system (ADS) and road obstructions on post take-over performance in near-miss scenarios. BackgroundPast research indicates partial ADS reduces the driver’s situation awareness and degrades post take-over performance. Connected vehicle technology may alert drivers to impending hazards in time to safely avoid near-miss events. MethodForty-eight licensed drivers using ADS were randomly assigned to either the active driving or passive driving condition. Participants navigated eight scenarios with or without a visual obstruction in a distributed driving simulator. The experimenter drove the other simulated vehicle to manually cause near-miss events. Participants’ mean longitudinal velocity, standard deviation of longitudinal velocity, and mean longitudinal acceleration were measured. ResultsParticipants in passive ADS group showed greater, and more variable, deceleration rates than those in the active ADS group. Despite a reliable audiovisual warning, participants failed to slow down in the red-light running scenario when the conflict vehicle was occluded. Participant’s trust in the automated driving system did not vary between the beginning and end of the experiment. ConclusionDrivers interacting with ADS in a passive manner may continue to show increased and more variable deceleration rates in near-miss scenarios even with reliable connected vehicle technology. Future research may focus on interactive effects of automated and connected driving technologies on drivers’ ability to anticipate and safely navigate near-miss scenarios. ApplicationDesigners of automated and connected vehicle technologies may consider different timing and types of cues to inform the drivers of imminent hazard in high-risk scenarios for near-miss events. 
    more » « less
  5. Abstract Salient objects grab attention because they stand out from their surroundings. Whether this phenomenon is accomplished by bottom-up sensory processing or requires top-down guidance is debated. We tested these alternative hypotheses by measuring how early and in which cortical layer(s) neural spiking distinguished a target from a distractor. We measured synaptic and spiking activity across cortical columns in mid-level area V4 of male macaque monkeys performing visual search for a color singleton. A neural signature of attentional capture was observed in the earliest response in the input layer 4. The magnitude of this response predicted response time and accuracy. Errant behavior followed errant selection. Because this response preceded top-down influences and arose in the cortical layer not targeted by top-down connections, these findings demonstrate that feedforward activation of sensory cortex can underlie attentional priority. 
    more » « less