skip to main content


Title: Drivers’ Spatio-Temporal Attentional Distributions Are Influenced by Vehicle Dynamics and Displayed Point of View
Objective

The aim of this study is to measure drivers’ attention to preview and their velocity and acceleration tracking error to evaluate two- and three-dimensional displays for following a winding roadway.

Background

Display perturbation techniques and Fourier analysis of steering movements can be used to infer drivers’ spatio-temporal distribution of attention to preview. Fourier analysis of tracking error time histories provides measures of position, velocity, and acceleration error.

Method

Participants tracked a winding roadway with 1 s of preview in low-fidelity driving simulations. Position and rate-aided vehicle dynamics were paired with top-down and windshield displays of the roadway.

Results

For both vehicle dynamics, tracking was smoother with the windshield display. This display emphasizes nearer preview positions and has a closer correspondence to the control-theoretic optimal attentional distributions for these tasks than the top-down display. This correspondence is interpreted as a form of stimulus–response compatibility. The position error and attentional signal-to-noise ratios did not differ between the two displays with position control, but with more complex rate-aided control much higher position error and much lower attentional signal-to-noise ratios occurred with the top-down display.

Conclusion

Display-driven influences on the distribution of attention may facilitate tracking with preview when they are similar to optimal attentional distributions derived from control theory.

Application

Display perturbation techniques can be used to assess spatially distributed attention to evaluate displays and secondary tasks in the context of driving. This methodology can supplement eye movement measurements to determine what information is guiding drivers’ actions.

 
more » « less
Award ID(s):
1901632
PAR ID:
10546951
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Human Factors: The Journal of the Human Factors and Ergonomics Society
Volume:
63
Issue:
4
ISSN:
0018-7208
Format(s):
Medium: X Size: p. 578-591
Size(s):
p. 578-591
Sponsoring Org:
National Science Foundation
More Like this
  1. Full windshield displays (WSDs) have the potential to present imagery across the windshield. Current knowledge on display location has not investigated translucent displays at high eccentricities from the driver's forward view. A simulator study (n=26) was conducted aiming to, (a) investigate the effects of Head-Up Display (HUD) location across the entire windshield on driving performance, and (b) better understand how the visual demand for a complex HUD imagery differs from that for a Head-Down Display (HDD). Lane-keeping was poorer when HUD imagery was furthest from the driver (and for the HDD compared to the HUD). Equally, counts of "unacceptable" driving behaviour were greater for displays furthest from the driver's forward view. Furthermore, drivers preferred HUD imagery that was closer to them. The results indicate that HUD evaluations should account for image location, because of how driver gaze location can impact lateral driving performance. 
    more » « less
  2. null (Ed.)
    Objective We controlled participants’ glance behavior while using head-down displays (HDDs) and head-up displays (HUDs) to isolate driving behavioral changes due to use of different display types across different driving environments. Background Recently, HUD technology has been incorporated into vehicles, allowing drivers to, in theory, gather display information without moving their eyes away from the road. Previous studies comparing the impact of HUDs with traditional displays on human performance show differences in both drivers’ visual attention and driving performance. Yet no studies have isolated glance from driving behaviors, which limits our ability to understand the cause of these differences and resulting impact on display design. Method We developed a novel method to control visual attention in a driving simulator. Twenty experienced drivers sustained visual attention to in-vehicle HDDs and HUDs while driving in both a simple straight and empty roadway environment and a more realistic driving environment that included traffic and turns. Results In the realistic environment, but not the simpler environment, we found evidence of differing driving behaviors between display conditions, even though participants’ glance behavior was similar. Conclusion Thus, the assumption that visual attention can be evaluated in the same way for different types of vehicle displays may be inaccurate. Differences between driving environments bring the validity of testing HUDs using simplistic driving environments into question. Application As we move toward the integration of HUD user interfaces into vehicles, it is important that we develop new, sensitive assessment methods to ensure HUD interfaces are indeed safe for driving. 
    more » « less
  3. Abstract

    People tend to employ suboptimal attention control strategies during visual search. Here we question why people are suboptimal, specifically investigating how knowledge of the optimal strategies and the time available to apply such strategies affect strategy use. We used the Adaptive Choice Visual Search (ACVS), a task designed to assess attentional control optimality. We used explicit strategy instructions to manipulate explicit strategy knowledge, and we used display previews to manipulate time to apply the strategies. In the first two experiments, the strategy instructions increased optimality. However, the preview manipulation did not significantly boost optimality for participants who did not receive strategy instruction. Finally, in Experiments 3A and 3B, we jointly manipulated preview and instruction with a larger sample size. Preview and instruction both produced significant main effects; furthermore, they interacted significantly, such that the beneficial effect of instructions emerged with greater preview time. Taken together, these results have important implications for understanding the strategic use of attentional control. Individuals with explicit knowledge of the optimal strategy are more likely to exploit relevant information in their visual environment, but only to the extent that they have the time to do so.

     
    more » « less
  4. Abstract Research Highlights

    Young children exhibited an endogenously ability, Returning, to preferentially transition attention to task‐relevant information over task‐irrelevant information.

    Selective sustained attention and its development were decomposed into Returning and Staying, or task‐selective attention maintenance, using novel eye‐tracking‐based measures.

    Returning improved between the ages of 3.5–6 years, to a greater extent than Staying.

    Improvements in Returning supported improvements in selective sustained attention between these ages.

     
    more » « less
  5. Abstract

    The ability to execute a motor plan involves spatiotemporally precise oscillatory activity in primary motor (M1) regions, in concert with recruitment of “higher order” attentional mechanisms for orienting toward current task goals. While current evidence implicates gamma oscillatory activity in M1 as central to the execution of a movement, far less is known about top‐down attentional modulation of this response. Herein, we utilized magnetoencephalography (MEG) during a Posner attention‐reorienting task to investigate top‐down modulation of M1 gamma responses by frontal attention networks in 63 healthy adult participants. MEG data were evaluated in the time–frequency domain and significant oscillatory responses were imaged using a beamformer. Robust increases in theta activity were found in bilateral inferior frontal gyri (IFG), with significantly stronger responses evident in trials that required attentional reorienting relative to those that did not. Additionally, strong gamma oscillations (60–80 Hz) were detected in M1 during movement execution, with similar responses elicited irrespective of attentional reorienting. Whole‐brain voxel‐wise correlations between validity difference scores (i.e., attention reorienting trials—nonreorienting trials) in frontal theta activity and movement‐locked gamma oscillations revealed a robust relationship in the contralateral sensorimotor cortex, supplementary motor area, and right cerebellum, suggesting modulation of these sensorimotor network gamma responses by attentional reorienting. Importantly, the validity difference effect in this distributed motor network was predictive of overall motor function measured outside the scanner and further, based on a mediation analysis this relationship was fully mediated by the reallocation response in the right IFG. These data are the first to characterize the top‐down modulation of movement‐related gamma responses during attentional reorienting and movement execution.

     
    more » « less