Serial dependence—an attractive perceptual bias whereby a current stimulus is perceived to be similar to previously seen ones—is thought to represent the process that facilitates the stability and continuity of visual perception. Recent results demonstrate a neural signature of serial dependence in numerosity perception, emerging very early in the time course during perceptual processing. However, whether such a perceptual signature is retained after the initial processing remains unknown. Here, we address this question by investigating the neural dynamics of serial dependence using a recently developed technique that allowed a reactivation of hidden memory states. Participants performed a numerosity discrimination task during EEG recording, with task-relevant dot array stimuli preceded by a task-irrelevant stimulus inducing serial dependence. Importantly, the neural network storing the representation of the numerosity stimulus was perturbed (or pinged) so that the hidden states of that representation can be explicitly quantified. The results first show that a neural signature of serial dependence emerges early in the brain signals, starting soon after stimulus onset. Critical to the central question, the pings at a later latency could successfully reactivate the biased representation of the initial stimulus carrying the signature of serial dependence. These results provide one of the first pieces of empirical evidence that the biased neural representation of a stimulus initially induced by serial dependence is preserved throughout a relatively long period.
more »
« less
Attractive Serial Dependence in the Absence of an Explicit Task
Attractive serial dependence refers to an adaptive change in the representation of sensory information, whereby a current stimulus appears to be similar to a previous one. The nature of this phenomenon is controversial, however, as serial dependence could arise from biased perceptual representations or from biased traces of working memory representation at a decisional stage. Here, we demonstrated a neural signature of serial dependence in numerosity perception emerging early in the visual processing stream even in the absence of an explicit task. Furthermore, a psychophysical experiment revealed that numerosity perception is biased by a previously presented stimulus in an attractive way, not by repulsive adaptation. These results suggest that serial dependence is a perceptual phenomenon starting from early levels of visual processing and occurring independently from a decision process, which is consistent with the view that these biases smooth out noise from neural signals to establish perceptual continuity.
more »
« less
- Award ID(s):
- 1654089
- PAR ID:
- 10547011
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Psychological Science
- Volume:
- 29
- Issue:
- 3
- ISSN:
- 0956-7976
- Format(s):
- Medium: X Size: p. 437-446
- Size(s):
- p. 437-446
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many species of animals exhibit an intuitive sense of number, suggesting a fundamental neural mechanism for representing numerosity in a visual scene. Recent empirical studies demonstrate that early feedforward visual responses are sensitive to numerosity of a dot array but substantially less so to continuous dimensions orthogonal to numerosity, such as size and spacing of the dots. However, the mechanisms that extract numerosity are unknown. Here, we identified the core neurocomputational principles underlying these effects: (1) center-surround contrast filters; (2) at different spatial scales; with (3) divisive normalization across network units. In an untrained computational model, these principles eliminated sensitivity to size and spacing, making numerosity the main determinant of the neuronal response magnitude. Moreover, a model implementation of these principles explained both well-known and relatively novel illusions of numerosity perception across space and time. This supports the conclusion that the neural structures and feedforward processes that encode numerosity naturally produce visual illusions of numerosity. Taken together, these results identify a set of neurocomputational properties that gives rise to the ubiquity of the number sense in the animal kingdom.more » « less
-
Deep neural network models provide a powerful experimental platform for exploring core mechanisms underlying human visual perception, such as perceptual grouping and contour integration—the process of linking local edge elements to arrive at a unified perceptual representation of a complete contour. Here, we demonstrate that feedforward convolutional neural networks (CNNs) fine-tuned on contour detection show this human-like capacity, but without relying on mechanisms proposed in prior work, such as lateral connections, recurrence, or top-down feedback. We identified two key properties needed for ImageNet pre-trained, feed-forward models to yield human-like contour integration: first, progressively increasing receptive field structure served as a critical architectural motif to support this capacity; and second, biased fine-tuning for contour-detection specifically for gradual curves (~20 degrees) resulted in human-like sensitivity to curvature. We further demonstrate that fine-tuning ImageNet pretrained models uncovers other hidden human-like capacities in feed-forward networks, including uncrowding (reduced interference from distractors as the number of distractors increases), which is considered a signature of human perceptual grouping. Thus, taken together these results provide a computational existence proof that purely feedforward hierarchical computations are capable of implementing gestalt “good continuation” and perceptual organization needed for human-like contour-integration and uncrowding. More broadly, these results raise the possibility that in human vision, later stages of processing play a more prominent role in perceptual-organization than implied by theories focused on recurrence and early lateral connections.more » « less
-
Abstract Numerosity perception is largely governed by two mechanisms. The first so-called subitizing system allows one to enumerate a small number of items (up to three or four) without error. The second system allows only an approximate estimation of larger numerosities. Here, we investigate the neural bases of the two systems using sequentially presented numerosity. Sequential numerosity (i.e., the number of events presented over time) starts as a subitizable set but may eventually transition into a larger numerosity in the approximate estimation range, thus offering a unique opportunity to investigate the neural signature of that transition point, or subitizing boundary. If sequential numerosity is encoded by two distinct perceptual mechanisms (i.e., for subitizing and approximate estimation), neural representations of the sequentially presented items crossing the subitizing boundary should be sharply distinguishable. In contrast, if sequential numerosity is encoded by a single perceptual mechanism for all numerosities and subitizing is achieved through an external postperceptual mechanism, no such differences in the neural representations should indicate the subitizing boundary. Using the high temporal resolution of the EEG technique incorporating a multivariate decoding analysis, we found results consistent with the latter hypothesis: No sharp representational distinctions were observed between items across the subitizing boundary, which is in contrast with the behavioral pattern of subitizing. The results support a single perceptual mechanism encoding sequential numerosities, whereas subitizing may be supported by a postperceptual attentional mechanism operating at a later processing stage.more » « less
-
Abstract Selective attention improves sensory processing of relevant information but can also impact the quality of perception. For example, attention increases visual discrimination performance and at the same time boosts apparent stimulus contrast of attended relative to unattended stimuli. Can attention also lead to perceptual distortions of visual representations? Optimal tuning accounts of attention suggest that processing is biased towards “off-tuned” features to maximize the signal-to-noise ratio in favor of the target, especially when targets and distractors are confusable. Here, we tested whether such tuning gives rise to phenomenological changes of visual features. We instructed participants to select a color among other colors in a visual search display and subsequently asked them to judge the appearance of the target color in a 2-alternative forced choice task. Participants consistently judged the target color to appear more dissimilar from the distractor color in feature space. Critically, the magnitude of these perceptual biases varied systematically with the similarity between target and distractor colors during search, indicating that attentional tuning quickly adapts to current task demands. In control experiments we rule out possible non-attentional explanations such as color contrast or memory effects. Overall, our results demonstrate that selective attention warps the representational geometry of color space, resulting in profound perceptual changes across large swaths of feature space. Broadly, these results indicate that efficient attentional selection can come at a perceptual cost by distorting our sensory experience.more » « less
An official website of the United States government
