Ribbons are a class of slender structures whose length, width, and thickness are widely separated from each other. This scale separation gives a ribbon unusual mechanical properties in athermal macroscopic settings, for example, it can bend without twisting, but cannot twist without bending. Given the ubiquity of ribbon-like biopolymers in biology and chemistry, here we study the statistical mechanics of microscopic inextensible, fluctuating ribbons loaded by forces and torques. We show that these ribbons exhibit a range of topologically and geometrically complex morphologies exemplified by three phases—a twist-dominated helical phase (HT), a writhe-dominated helical phase (HW), and an entangled phase—that arise as the applied torque and force are varied. Furthermore, the transition from HW to HT phases is characterized by the spontaneous breaking of parity symmetry and the disappearance of perversions (that correspond to chirality-reversing localized defects). This leads to a universal response curve of a topological quantity, the link, as a function of the applied torque that is similar to magnetization curves in second-order phase transitions. 
                        more » 
                        « less   
                    
                            
                            Symmetry-adapted tight-binding electronic structure analysis of carbon nanotubes with defects, kinks, twist, and stretch
                        
                    
    
            In this paper, a symmetry-adapted method is applied to examine the influence of deformation and defects on the electronic structure and band structure in carbon nanotubes. First, the symmetry-adapted approach is used to develop the analog of Bloch waves. Building on this, the technique of perfectly matched layers is applied to develop a method to truncate the computational domain of electronic structure calculations without spurious size effects. This provides an efficient and accurate numerical approach to compute the electronic structure and electromechanics of defects in nanotubes. The computational method is applied to study the effect of twist, stretch, and bending, with and without various types of defects, on the band structure of nanotubes. Specifically, the effect of stretch and twist on band structure in defect-free conducting and semiconducting nanotubes is examined, and the interaction with vacancy defects is elucidated. Next, the effect of localized bending or kinking on the electronic structure is studied. Finally, the paper examines the effect of 5–8–5 Stone–Wales defects. In all of these settings, the perfectly matched layer method enables the calculation of localized non-propagating defect modes with energies in the bandgap of the defect-free nanotube. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1635407
- PAR ID:
- 10547028
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Mathematics and Mechanics of Solids
- Volume:
- 26
- Issue:
- 5
- ISSN:
- 1081-2865
- Format(s):
- Medium: X Size: p. 667-682
- Size(s):
- p. 667-682
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We calculate the torsional moduli of single-walled transition metal dichalcogenide (TMD) nanotubes using ab initio density functional theory (DFT). Specifically, considering forty-five select TMD nanotubes, we perform symmetry-adapted DFT calculations to calculate the torsional moduli for the armchair and zigzag variants of these materials in the low-twist regime and at practically relevant diameters. We find that the torsional moduli follow the trend: MS 2 > MSe 2 > MTe 2 . In addition, the moduli display a power law dependence on diameter, with the scaling generally close to cubic, as predicted by the isotropic elastic continuum model. In particular, the shear moduli so computed are in good agreement with those predicted by the isotropic relation in terms of the Young’s modulus and Poisson’s ratio, both of which are also calculated using symmetry-adapted DFT. Finally, we develop a linear regression model for the torsional moduli of TMD nanotubes based on the nature/characteristics of the metal-chalcogen bond, and show that it is capable of making reasonably accurate predictions.more » « less
- 
            Abstract Point defects in two-dimensional materials are of key interest for quantum information science. However, the parameter space of possible defects is immense, making the identification of high-performance quantum defects very challenging. Here, we perform high-throughput (HT) first-principles computational screening to search for promising quantum defects within WS2, which present localized levels in the band gap that can lead to bright optical transitions in the visible or telecom regime. Our computed database spans more than 700 charged defects formed through substitution on the tungsten or sulfur site. We found that sulfur substitutions enable the most promising quantum defects. We computationally identify the neutral cobalt substitution to sulfur (Co$${}_{{{{{{{{\rm{S}}}}}}}}}^{0}$$ ) and fabricate it with scanning tunneling microscopy (STM). The Co$${}_{{{{{{{{\rm{S}}}}}}}}}^{0}$$ electronic structure measured by STM agrees with first principles and showcases an attractive quantum defect. Our work shows how HT computational screening and nanoscale synthesis routes can be combined to design promising quantum defects.more » « less
- 
            Abstract We use time-dependent density functional theory to investigate the possibility of hosting organic color centers in (6, 6) armchair single-walled carbon nanotubes, which are known to be metallic. Our calculations show that in short segments of (6, 6) nanotubes ∼ 5 nm in length there is a dipole-allowed singlet transition related to the quantum confinement of charge carriers in the smaller segments. The introduction of s p 3 defects to the surface of (6, 6) nanotubes results in new dipole-allowed excited states. Some of these states are redshifted from the native confinement state of the defect-free (6, 6) segments; this is similar behavior to what is observed with s p 3 defects to exciton transitions in semiconducting carbon nanotubes. This result suggests the possibility of electrically wiring organic color centers directly through armchair carbon nanotube hosts.more » « less
- 
            Atomic defect color centers in solid-state systems hold immense potential to advance various quantum technologies. However, the fabrication of high-quality, densely packed defects presents a significant challenge. Herein we introduce a DNA-programmable photochemical approach for creating organic color-center quantum defects on semiconducting single-walled carbon nanotubes (SWCNTs). Key to this precision defect chemistry is the strategic substitution of thymine with halogenated uracil in DNA strands that are orderly wrapped around the nanotube. Photochemical activation of the reactive uracil initiates the formation of sp3 defects along the nanotube as deep exciton traps, with a pronounced photoluminescence shift from the nanotube band gap emission (by 191 meV for (6,5)-SWCNTs). Furthermore, by altering the DNA spacers, we achieve systematic control over the defect placements along the nanotube. This method, bridging advanced molecular chemistry with quantum materials science, marks a crucial step in crafting quantum defects for critical applications in quantum information science, imaging, and sensing.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
