skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid runtime learning by curating small datasets of high-quality items obtained from memory
We propose the “runtime learning” hypothesis which states that people quickly learn to perform unfamiliar tasks as the tasks arise by using task-relevant instances of concepts stored in memory during mental training. To make learning rapid, the hypothesis claims that only a few class instances are used, but these instances are especially valuable for training. The paper motivates the hypothesis by describing related ideas from the cognitive science and machine learning literatures. Using computer simulation, we show that deep neural networks (DNNs) can learn effectively from small, curated training sets, and that valuable training items tend to lie toward the centers of data item clusters in an abstract feature space. In a series of three behavioral experiments, we show that people can also learn effectively from small, curated training sets. Critically, we find that participant reaction times and fitted drift rates are best accounted for by the confidences of DNNs trained on small datasets of highly valuable items. We conclude that the runtime learning hypothesis is a novel conjecture about the relationship between learning and memory with the potential for explaining a wide variety of cognitive phenomena.  more » « less
Award ID(s):
1824737
PAR ID:
10547205
Author(s) / Creator(s):
; ; ;
Editor(s):
Cai, Ming Bo
Publisher / Repository:
PLOS Computational Biology
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
19
Issue:
10
ISSN:
1553-7358
Page Range / eLocation ID:
e1011445
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Deep Neural Networks (or DNNs) must constantly cope with distribution changes in the input data when the task of interest or the data collection protocol changes. Retraining a network from scratch to combat this issue poses a significant cost. Meta-learning aims to deliver an adaptive model that is sensitive to these underlying distribution changes, but requires many tasks during the meta-training process. In this paper, we propose a tAsk-auGmented actIve meta-LEarning (AGILE) method to efficiently adapt DNNs to new tasks by using a small number of training examples. AGILE combines a meta-learning algorithm with a novel task augmentation technique which we use to generate an initial adaptive model. It then uses Bayesian dropout uncertainty estimates to actively select the most difficult samples when updating the model to a new task. This allows AGILE to learn with fewer tasks and a few informative samples, achieving high performance with a limited dataset. We perform our experiments using the brain cell classification task and compare the results to a plain meta-learning model trained from scratch. We show that the proposed task-augmented meta-learning framework can learn to classify new cell types after a single gradient step with a limited number of training samples. We show that active learning with Bayesian uncertainty can further improve the performance when the number of training samples is extremely small. Using only 1% of the training data and a single update step, we achieved 90% accuracy on the new cell type classification task, a 50% points improvement over a state-of-the-art meta-learning algorithm. 
    more » « less
  2. null (Ed.)
    Training Deep Neural Networks (DNNs) is resource-intensive and time-consuming. While prior research has explored many different ways of reducing DNN training time, the impact of input data pipeline , i.e., fetching raw data items from storage and performing data pre-processing in memory, has been relatively unexplored. This paper makes the following contributions: (1) We present the first comprehensive analysis of how the input data pipeline affects the training time of widely-used computer vision and audio Deep Neural Networks (DNNs), that typically involve complex data pre-processing. We analyze nine different models across three tasks and four datasets while varying factors such as the amount of memory, number of CPU threads, storage device, GPU generation etc on servers that are a part of a large production cluster at Microsoft. We find that in many cases, DNN training time is dominated by data stall time : time spent waiting for data to be fetched and pre-processed. (2) We build a tool, DS-Analyzer to precisely measure data stalls using a differential technique, and perform predictive what-if analysis on data stalls. (3) Finally, based on the insights from our analysis, we design and implement three simple but effective techniques in a data-loading library, CoorDL, to mitigate data stalls. Our experiments on a range of DNN tasks, models, datasets, and hardware configs show that when PyTorch uses CoorDL instead of the state-of-the-art DALI data loading library, DNN training time is reduced significantly (by as much as 5X on a single server). 
    more » « less
  3. null (Ed.)
    Deep neural networks (DNNs) are known for extracting useful information from large amounts of data. However, the representations learned in DNNs are typically hard to interpret, especially in dense layers. One crucial issue of the classical DNN model such as multilayer perceptron (MLP) is that neurons in the same layer of DNNs are conditionally independent of each other, which makes co-training and emergence of higher modularity difficult. In contrast to DNNs, biological neurons in mammalian brains display substantial dependency patterns. Specifically, biological neural networks encode representations by so-called neuronal assemblies: groups of neurons interconnected by strong synaptic interactions and sharing joint semantic content. The resulting population coding is essential for human cognitive and mnemonic processes. Here, we propose a novel Biologically Enhanced Artificial Neuronal assembly (BEAN) regularization 1 to model neuronal correlations and dependencies, inspired by cell assembly theory from neuroscience. Experimental results show that BEAN enables the formation of interpretable neuronal functional clusters and consequently promotes a sparse, memory/computation-efficient network without loss of model performance. Moreover, our few-shot learning experiments demonstrate that BEAN could also enhance the generalizability of the model when training samples are extremely limited. 
    more » « less
  4. Aguilera, Marcos; Yadgar, Gala (Ed.)
    Training Deep Neural Networks (DNNs) is a resource-hungry and time-consuming task. During training, the model performs computation at the GPU to learn weights, repeatedly, over several epochs. The learned weights reside in GPU memory, and are occasionally checkpointed (written to persistent storage) for fault-tolerance. Traditionally, model parameters are checkpointed at epoch boundaries; for modern deep networks, an epoch runs for several hours. An interruption to the training job due to preemption, node failure, or process failure, therefore results in the loss of several hours worth of GPU work on recovery. We present CheckFreq, an automatic, fine-grained checkpointing framework that (1) algorithmically determines the checkpointing frequency at the granularity of iterations using systematic online profiling, (2) dynamically tunes checkpointing frequency at runtime to bound the checkpointing overhead using adaptive rate tuning, (3) maintains the training data invariant of using each item in the dataset exactly once per epoch by checkpointing data loader state using a light-weight resumable iterator, and (4) carefully pipelines checkpointing with computation to reduce the checkpoint cost by introducing two-phase checkpointing. Our experiments on a variety of models, storage backends, and GPU generations show that CheckFreq can reduce the recovery time from hours to seconds while bounding the runtime overhead within 3.5%. 
    more » « less
  5. null (Ed.)
    Deep neural networks (DNNs) have recently gained unprecedented success in various domains. In resource-constrained systems, QoS-aware DNNs are designed to meet latency requirements of mission-critical deep learning applications. However, none of the existing DNNs have been designed to satisfy both latency and memory bounds simultaneously as specified by end-users in the resource-constrained systems. In this paper, we propose BLINKNET, a runtime system that is able to guarantee both latency and memory/storage bounds via efficient QoS-aware per-layer approximation. We implement BLINKNET in Apache TVM and evaluate it using Cifar10-quick and VGG network models. Our experimental results show that BLINKNET can meet the latency and memory requirements with 2% accuracy loss on average. 
    more » « less