Simulation provides vast benefits for the field of robotics and Human-Robot Interaction (HRI). This study investigates how sensor effects seen in the real domain can be modeled in simulation and what role they play in effective Sim2Real domain transfer for learned perception models. The study considers introducing naive noise approaches such as additive Gaussian and salt and pepper noise as well as data-driven sensor effects models into simulation for representing Microsoft Kinect sensor capabilities and phenomena seen on real world systems. This study quantifies the benefit of multiple approaches to modeling sensor effects in simulation for Sim2Real domain transfer by their object classification improvements in the real domain. User studies are conducted to address hypotheses by training grounded language models in each of the sensor effects modeling cases and evaluated on the robot's interaction capabilities in the real domain. In addition to grounded language performance metrics, user study evaluation includes surveys on the human participant's assessment of the robot's capabilities in the real domain. Results from this pilot study show benefits to modeling sensor noise in simulation for Sim2Real domain transfer. This study also begins to explore the effects that such models have on human-robot interactions.
more »
« less
Nigel—Mechatronic Design and Robust Sim2Real Control of an Overactuated Autonomous Vehicle
Simulation to reality (sim2real) transfer from a dynamics and controls perspective usually involves re-tuning or adapting the designed algorithms to suit real-world operating conditions, which often violates the performance guarantees established originally. This work presents a generalizable framework for achieving reliable sim2real transfer of autonomy-oriented control systems using multimodel multiobjective robust optimal control synthesis, which lends well to uncertainty handling and disturbance rejection with theoretical guarantees. Particularly, this work is centered around a novel actuation-redundant scaled autonomous vehicle called Nigel, with independent all-wheel drive and independent all-wheel steering architecture, whose enhanced configuration space bodes well for robust control applications. To this end, we present the mechatronic design, dynamics modeling, parameter identification, and robust stabilizing as well as tracking control of Nigel using the proposed framework, with exhaustive experimentation and benchmarking in simulation as well as real-world settings.
more »
« less
- Award ID(s):
- 1925500
- PAR ID:
- 10547242
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE/ASME Transactions on Mechatronics
- Volume:
- 29
- Issue:
- 4
- ISSN:
- 1083-4435
- Page Range / eLocation ID:
- 2785 to 2793
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Modern nonlinear control theory seeks to endow systems with properties such as stability and safety, and has been deployed successfully across various domains. Despite this success, model uncertainty remains a significant challenge in ensuring that model-based controllers transfer to real world systems. This paper develops a data-driven approach to robust control synthesis in the presence of model uncertainty using Control Certificate Functions (CCFs), resulting in a convex optimization based controller for achieving properties like stability and safety. An important benefit of our framework is nuanced data-dependent guarantees, which in principle can yield sample-efficient data collection approaches that need not fully determine the input-to-state relationship. This work serves as a starting point for addressing important questions at the intersection of nonlinear control theory and non-parametric learning, both theoretical and in application. We demonstrate the efficiency of the proposed method with respect to input data in simulation with an inverted pendulum in multiple experimental settings.more » « less
-
Simulation parameter settings such as contact models and object geometry approximations are critical to training robust robotic policies capable of transferring from simulation to real-world deployment. Previous approaches typically handcraft distributions over such parameters (domain randomization), or identify parameters that best match the dynamics of the real environment (system identification). However, there is often an irreducible gap between simulation and reality: attempting to match the dynamics between simulation and reality across all states and tasks may be infeasible and may not lead to policies that perform well in reality for a specific task. Addressing this issue, we propose AdaptSim, a new task-driven adaptation framework for sim-to-real transfer that aims to optimize task performance in target (real) environments -- instead of matching dynamics between simulation and reality. First, we meta-learn an adaptation policy in simulation using reinforcement learning for adjusting the simulation parameter distribution based on the current policy's performance in a target environment. We then perform iterative real-world adaptation by inferring new simulation parameter distributions for policy training, using a small amount of real data. We perform experiments in three robotic tasks: (1) swing-up of linearized double pendulum, (2) dynamic table-top pushing of a bottle, and (3) dynamic scooping of food pieces with a spatula. Our extensive simulation and hardware experiments demonstrate AdaptSim achieving 1-3x asymptotic performance and ∼2x real data efficiency when adapting to different environments, compared to methods based on Sys-ID and directly training the task policy in target environments.more » « less
-
Generative Attention Learning (GenerAL) is a framework for high-DOF multi-fingered grasping that is not only robust to dense clutter and novel objects but also effective with a variety of different parallel-jaw and multi-fingered robot hands. This framework introduces a novel attention mechanism that substantially improves the grasp success rate in clutter. Its generative nature allows the learning of full-DOF grasps with flexible end-effector positions and orientations, as well as all finger joint angles of the hand. Trained purely in simulation, this framework skillfully closes the sim-to-real gap. To close the visual sim-to-real gap, this framework uses a single depth image as input. To close the dynamics sim-to-real gap, this framework circumvents continuous motor control with a direct mapping from pixel to Cartesian space inferred from the same depth image. Finally, this framework demonstrates inter-robot generality by achieving over 92% real-world grasp success rates in cluttered scenes with novel objects using two multi-fingered robotic hand-arm systems with different degrees of freedom.more » « less
-
This work develops a technique for using robot motion trajectories to create a high quality stochastic dynamics model that is then leveraged in simulation to train control policies with associated performance guarantees. We demonstrate the idea by collecting dynamics data from a 1/5 scale agile ground vehicle, fitting a stochastic dynamics model, and training a policy in simulation to drive around an oval track at up to 6.5 m/s while avoiding obstacles. We show that the control policy can be transferred back to the real vehicle with little loss in predicted performance. We compare this to an approach that uses a simple analytic car model to train a policy in simulation and show that using a model with stochasticity learned from data leads to higher performance in terms of trajectory tracking accuracy and collision probability. Furthermore, we show empirically that simulation-derived performance guarantees transfer to the actual vehicle when executing a policy optimized using a deep stochastic dynamics model fit to vehicle data.more » « less
An official website of the United States government

