Sudden reductions in crop yield (i.e., yield shocks) severely disrupt the food supply, intensify food insecurity, depress farmers' welfare, and worsen a country's economic conditions. Here, we study the spatiotemporal patterns of wheat yield shocks, quantified by the lower quantiles of yield fluctuations, in 86 countries over 30 years. Furthermore, we assess the relationships between shocks and their key ecological and socioeconomic drivers using quantile regression based on statistical (linear quantile mixed model) and machine learning (quantile random forest) models. Using a panel dataset that captures spatiotemporal patterns of yield shocks and possible drivers in 86 countries, we find that the severity of yield shocks has been increasing globally since 1997. Moreover, our cross-validation exercise shows that quantile random forest outperforms the linear quantile regression model. Despite this performance difference, both models consistently reveal that the severity of shocks is associated with higher weather stress, nitrogen fertilizer application rate, and gross domestic product (GDP) per capita (a typical indicator for economic and technological advancement in a country). While the unexpected negative association between more severe wheat yield shocks and higher fertilizer application rate and GDP per capita does not imply a direct causal effect, they indicate that the advancement in wheat production has been primarily on achieving higher yields and less on lowering the possibility and magnitude of sharp yield reductions. Hence, in the context of growing extreme weather stress, there is a critical need to enhance the technology and management practices that mitigate yield shocks to improve the resilience of the world food systems.
more »
« less
Characterizing the dynamics of multi-scale global high impact weather events
Abstract The quantitative characterization and prediction of localized severe weather events that emerge as coherences generated by the highly non-linear interacting multivariate dynamics of global weather systems poses a significant challenge whose solution is increasingly important in the face of climate change where weather extremes are on the rise. As weather measurement systems (multiband satellite, radar, etc) continue to dramatically improve, increasingly complex time-dependent multivariate 3D datasets offer the potential to inform such problems but pose an increasingly daunting computational challenge. Here we describe the application to global weather systems of a novel computational method called the Entropy Field Decomposition (EFD) capable of efficiently characterizing coherent spatiotemporal structures in non-linear multivariate interacting physical systems. Using the EFD derived system configurations, we demonstrate the application of a second novel computational method called Space-Time Information Trajectories (STITs) that reveal how spatiotemporal coherences are dynamically connected. The method is demonstrated on the specific phenomenon known as atmospheric rivers (ARs) which are a prime example of a highly coherent, in both space and time, severe weather phenomenon whose generation and persistence are influenced by weather dynamics on a wide range of spatial and temporal scales. The EFD reveals how the interacting wind vector field and humidity scalar field couple to produce ARs, while the resulting STITS reveal the linkage between ARs and large-scale planetary circulations. The focus on ARs is also motivated by their devastating social and economic effects that have made them the subject of increasing scientific investigation to which the EFD may offer new insights. The application of EFD and STITs to the broader range of severe weather events is discussed.
more »
« less
- Award ID(s):
- 2114860
- PAR ID:
- 10547276
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2045-2322
- Subject(s) / Keyword(s):
- Weather dynamics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Quantum coherences, observed as time-dependent beats in ultrafast spectroscopic experiments, arise when light–matter interactions prepare systems in superpositions of states with differing energy and fixed phase across the ensemble. Such coherences have been observed in photosynthetic systems following ultrafast laser excitation, but what these coherences imply about the underlying energy transfer dynamics remains subject to debate. Recent work showed that redox conditions tune vibronic coupling in the Fenna–Matthews–Olson (FMO) pigment–protein complex in green sulfur bacteria, raising the question of whether redox conditions may also affect the long-lived (>100 fs) quantum coherences observed in this complex. In this work, we perform ultrafast two-dimensional electronic spectroscopy measurements on the FMO complex under both oxidizing and reducing conditions. We observe that many excited-state coherences are exclusively present in reducing conditions and are absent or attenuated in oxidizing conditions. Reducing conditions mimic the natural conditions of the complex more closely. Further, the presence of these coherences correlates with the vibronic coupling that produces faster, more efficient energy transfer through the complex under reducing conditions. The growth of coherences across the waiting time and the number of beating frequencies across hundreds of wavenumbers in the power spectra suggest that the beats are excited-state coherences with a mostly vibrational character whose phase relationship is maintained through the energy transfer process. Our results suggest that excitonic energy transfer proceeds through a coherent mechanism in this complex and that the coherences may provide a tool to disentangle coherent relaxation from energy transfer driven by stochastic environmental fluctuations.more » « less
-
Abstract Solar flare prediction studies have been recently conducted with the use of Space-Weather MDI (Michelson Doppler Imager on board Solar and Heliospheric Observatory) Active Region Patches (SMARPs) and Space-Weather HMI (Helioseismic and Magnetic Imager on board Solar Dynamics Observatory) Active Region Patches (SHARPs), which are two currently available data products containing magnetic field characteristics of solar active regions (ARs). The present work is an effort to combine them into one data product, and perform some initial statistical analyses in order to further expand their application in space-weather forecasting. The combined data are derived by filtering, rescaling, and merging the SMARP and SHARP parameters, which can then be spatially reduced to create uniform multivariate time series. The resulting combined MDI–HMI data set currently spans the period between 1996 April 4 and 2022 December 13, and may be extended to a more recent date. This provides an opportunity to correlate and compare it with other space-weather time series, such as the daily solar flare index or the statistical properties of the soft X-ray flux measured by the Geostationary Operational Environmental Satellites. Time-lagged cross correlation indicates that a relationship may exist, where some magnetic field properties of ARs lead the flare index in time. Applying the rolling-window technique makes it possible to see how this leader–follower dynamic varies with time. Preliminary results indicate that areas of high correlation generally correspond to increased flare activity during the peak solar cycle.more » « less
-
Abstract This research quantifies the spatiotemporal statistics of composite radar reflectivity in the vicinity of severe thunderstorm reports. By using over 20 years (1996–2017) of data and 500,000 severe thunderstorm reports, this study presents the most comprehensive analysis of the mesoscale presentation of radar reflectivity composites during severe weather events to date. We first present probability matched mean composites of approximately 5,000 radar images centred on tornado reports that contain one of three types of manually‐labelled convective storm modes—namely, (a) quasi‐linear convective system (QLCS); (b) cellular; or (c) tropical system. Next, we generate composites for tornado report data stratified by EF‐scale and for four temporal periods during which notable severe weather events took place. The data are then stratified by hazard, region, season, and time of day. The results show marked spatiotemporal and intra‐hazard variability in radar presentation. In general, cellular convection is favoured in the Great Plains of the United States, whereas QLCS convection is favoured in the Southeast United States. Night and cool‐season subsets showed a preference for QLCS convection, whereas day and warm‐season subsets showed a preference for cellular convection. These results agree well with the existing literature and suggest that the data extraction and organization approach is sound. Because of this, these data will be useful for future image classification studies in climate and atmospheric sciences—particularly those involving storm mode classification.more » « less
-
In recent decades, blackouts have shown an increasing prevalence of power outages due to extreme weather events such as hurricanes. Precisely assessing the spatiotemporal outages in distribution networks, the most vulnerable part of power systems, is critical to enhancing power system resilience. The Sequential Monte Carlo (SMC) simulation method is widely used for spatiotemporal risk analysis of power systems during extreme weather hazards. However, it is found here that the SMC method can lead to large errors as it repeatedly samples the failure probability from the time-invariant fragility functions of system components in time-series analysis, particularly overestimating damages under evolving hazards with high-frequency sampling. To address this issue, a novel hazard resistance-based spatiotemporal risk analysis (HRSRA) method is proposed. This method converts the failure probability of a component into a hazard resistance and uses it as a time-invariant value in time-series analysis. The proposed HRSRA provides an adaptive framework for incorporating high-spatiotemporal-resolution meteorology models into power outage simulations. By leveraging the geographic information system data of the power system and a physics-based hurricane wind field model, the superiority of the proposed method is validated using real-world time-series power outage data from Puerto Rico, including data collected during Hurricane Fiona in 2022.more » « less
An official website of the United States government

