skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying scientific jargon
When scientists disseminate their work to the general public, excessive use of jargon should be avoided because if too much technical language is used, the message is not effectively conveyed. However, determining which words are jargon and how much jargon is too much is a difficult task, partly because it can be challenging to know which terms the general public knows, and partly that it can be challenging to ensure scientific accuracy while avoiding esoteric terminology. To help address this issue, we have written an R script that an author can use to quantify the amount of scientific jargon in any written piece and make appropriate edits based on the target audience.  more » « less
Award ID(s):
1735124
PAR ID:
10547320
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Public Understanding of Science
Volume:
29
Issue:
6
ISSN:
0963-6625
Format(s):
Medium: X Size: p. 634-643
Size(s):
p. 634-643
Sponsoring Org:
National Science Foundation
More Like this
  1. The international GEOTRACES program (https://www.geotraces.org/) is a marine geochemical project involving scientists from more than 35 countries that aims to improve understanding of trace elements and their isotopes in the marine environment (Anderson, 2024, in this issue). However, terms such as trace elements and isotopes can be very challenging concepts to communicate to a non-scientific audience. GEOTRACES scientists face this difficulty when explaining their research to the general public. To overcome it, the GEOTRACES International Project Office launched a series of short (about three minutes) educational videos aimed at introducing and explaining the science of the GEOTRACES program to the general public. These videos explain marine geochemical science and concepts such as trace elements and isotopes in an easy and fun format while keeping the scientific message accurate. They also constitute a powerful teaching resource and offer an accessible and appealing method for students to learn about marine geochemistry. 
    more » « less
  2. Segura, Miriam (Ed.)
    The impact of immunology on our daily lives is growing every year. From vaccines to immunotherapies, it's essential for our healthcare professionals (present and future) and the general public as patients or caregivers to be literate in immunology. One way to foster immune literacy in this rapidly advancing field is through Primary Scientific Literature (PSL). There are unique challenges with integrating PSL into immunology courses. First, the laboratory techniques used are often new and not things students have tried before or may have access to, such as flow cytometry. Second, the tools used in this literature can be confusing. For example, antibodies are often used as both part of the research method and as the research subject. Third, immunology literature is especially heavy in acronyms, jargon and abbreviations. In this manuscript, four instructors gathered to discuss the strategies that they have used in their classrooms to utilize PSL in immunology (PSL-I) and scaffold various activities around it. These teaching methods vary from highlighting immunology-specific techniques, interpreting figures, alignment with the 5E instructional model to guide an inquiry, jigsaw format learning, to in-depth journal-club style analysis. Finally, this paper discusses reflections from our experiences teaching PSL-I. We know that there are misconceptions about immunology and health in general. If we teach PSL and how to interpret it, we hope to prepare our students not just for their chosen field, but also to think critically and discern facts from fiction in society. 
    more » « less
  3. Abstract The new wave of ‘foundation models’—general-purpose generative AI models, for production of text (e.g., ChatGPT) or images (e.g., MidJourney)—represent a dramatic advance in the state of the art for AI. But their use also introduces a range of new risks, which has prompted an ongoing conversation about possible regulatory mechanisms. Here we propose a specific principle that should be incorporated into legislation: that any organization developing a foundation model intended for public use must demonstrate a reliabledetection mechanismfor the content it generates, as a condition of its public release. The detection mechanism should be made publicly available in a tool that allows users to query, for an arbitrary item of content, whether the item was generated (wholly or partly) by the model. In this paper, we argue that this requirement is technically feasible and would play an important role in reducing certain risks from new AI models in many domains. We also outline a number of options for the tool’s design, and summarize a number of points where further input from policymakers and researchers would be required. 
    more » « less
  4. null (Ed.)
    Reducing a failure-inducing input to a smaller one is challenging for input with internal dependencies because most sub-inputs are invalid. Kalhauge and Palsberg made progress on this problem by mapping the task to a reduction problem for dependency graphs that avoids invalid inputs entirely. Their tool J-Reduce efficiently reduces Java bytecode to 24 percent of its original size, which made it the most effective tool until now. However, the output from their tool is often too large to be helpful in a bug report. In this paper, we show that more fine-grained modeling of dependencies leads to much more reduction. Specifically, we use propositional logic for specifying dependencies and we show how this works for Java bytecode. Once we have a propositional formula that specifies all valid sub-inputs, we run an algorithm that finds a small, valid, failure-inducing input. Our algorithm interleaves runs of the buggy program and calls to a procedure that finds a minimal satisfying assignment. Our experiments show that we can reduce Java bytecode to 4.6 percent of its original size, which is 5.3 times better than the 24.3 percent achieved by J-Reduce. The much smaller output is more suitable for bug reports. 
    more » « less
  5. null (Ed.)
    The earth sciences, all sciences, are doing more and more of their activities online. Although moving online was previously a well-established trend, the COVID-19 crisis has accelerated this, as faculty, teachers, and students came to understand all too well during 2020. Ordinary activities, such as field trips, field camps, and even professional meetings like GSA 2020 Connects Online, have moved mostly online (Tikoff et al., 2020). We have had to devise new ways of teaching that are entirely outside of our experience. Rather than wistfully wishing for a return to times past, the current situation is an opportunity to explore change and depart from our old ways of doing things, striving to make our science and our geology richer to each other. Returning to and reliving the past is what we do in our geology, but it should not be what we do as geologists and scientists. At the same time, it is becoming more critical for earth scientists, and all scientists, to better engage the public and stakeholders in their work, their data, and their insights and conclusions. We have been facing not only a pandemic of disease but also a pandemic of climate change accompanied by the malady of denying science. Because the subject of geology is our shared planet and environment, geoscientists can present much of their work in a way that is relevant to the public. We have an advantage in that the public can see what we do, look directly at what we study, and appreciate where samples come from for our analyses. The basis of our science surrounds us. The online world further opens our science, whether in geologic maps, pictures of thin sections of rocks, or a numerical age for a sample, to general observation. This new openness and connectedness can give us the power of remote participation and access 
    more » « less