skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Secreted nucleases reclaim extracellular DNA during biofilm development
Abstract DNA is the genetic code found inside all living cells and its molecular stability can also be utilized outside the cell. While extracellular DNA (eDNA) has been identified as a structural polymer in bacterial biofilms, whether it persists stably throughout development remains unclear. Here, we report that eDNA is temporarily invested in the biofilm matrix before being reclaimed later in development. Specifically, by imaging eDNA dynamics within undomesticatedBacillus subtilisbiofilms, we found eDNA is produced during biofilm establishment before being globally degraded in a spatiotemporally coordinated pulse. We identified YhcR, a secreted Ca2+-dependent nuclease, as responsible for eDNA degradation in pellicle biofilms. YhcR cooperates with two other nucleases, NucA and NucB, to reclaim eDNA for its phosphate content in colony biofilms. Our results identify extracellular nucleases that are crucial for eDNA reclamation during biofilm development and we therefore propose a new role for eDNA as a dynamic metabolic reservoir.  more » « less
Award ID(s):
2239567 2235451
PAR ID:
10547391
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Biofilms and Microbiomes
Volume:
10
Issue:
1
ISSN:
2055-5008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. O'Toole, George (Ed.)
    ABSTRACT The biofilm matrix is composed of exopolysaccharides, eDNA, membrane vesicles, and proteins. While proteomic analyses have identified numerous matrix proteins, their functions in the biofilm remain understudied compared to the other biofilm components. In the Pseudomonas aeruginosa biofilm, several studies have identified OprF as an abundant matrix protein and, more specifically, as a component of biofilm membrane vesicles. OprF is a major outer membrane porin of P. aeruginosa cells. However, current data describing the effects of OprF in the P. aeruginosa biofilm are limited. Here, we identify a nutrient-dependent effect of OprF in static biofilms, whereby Δ oprF cells form significantly less biofilm than wild type when grown in media containing glucose or low sodium chloride concentrations. Interestingly, this biofilm defect occurs during late static biofilm formation and is not dependent on the production of PQS, which is responsible for outer membrane vesicle production. Furthermore, while biofilms lacking OprF contain approximately 60% less total biomass than those of wild type, the number of cells in these two biofilms is equivalent. We demonstrate that P. aeruginosa Δ oprF biofilms with reduced biofilm biomass contain less eDNA than wild-type biofilms. These results suggest that the nutrient-dependent effect of OprF is involved in the maintenance of P. aeruginosa biofilms by retaining eDNA in the matrix. IMPORTANCE Many pathogens form biofilms, which are bacterial communities encased in an extracellular matrix that protects them against antibacterial treatments. The roles of several matrix components of the opportunistic pathogen Pseudomonas aeruginosa have been characterized. However, the effects of P. aeruginosa matrix proteins remain understudied and are untapped potential targets for antibiofilm treatments. Here, we describe a conditional effect of the abundant matrix protein OprF on late-stage P. aeruginosa biofilms. A Δ oprF strain formed significantly less biofilm in low sodium chloride or with glucose. Interestingly, the defective Δ oprF biofilms did not exhibit fewer resident cells but contained significantly less extracellular DNA (eDNA) than wild type. These results suggest that OprF is involved in matrix eDNA retention in biofilms. 
    more » « less
  2. Imperiale, Michael J (Ed.)
    ABSTRACT Marine bacteria face a constant influx of new extracellular DNA (exDNA) due to the massive viral lysis that occurs in the ocean on a daily basis. Generally, biofilms have shown to be induced by self-secreted exDNA. However, the effect of various types of exDNA with varying lengths, self vs non-self, as well as guanine-cytosine content (GC) content on biofilm formation has not been explored, despite being a critical component of the extracellular polymeric substance. To test the effect of such exDNA on biofilms, a marine bioluminescent bacterium (Vibrio hyugaensis) was isolated from the Sippewissett Salt Marsh, USA, and treated with various types of exDNA. We observed rapid pellicle formation with distinct morphologies only in cultures treated with herring sperm gDNA, anotherVibriospp. gDNA, and an oligomer of 61–80% GC content. With pH measurements before and after the treatment, we observed a positive correlation between biofilm formation and the change to a more neutral pH. Our study highlights the importance of studying DNA-biofilm interaction by carefully examining the physical properties of the DNA and by varying its content, length, and source. Our observation may serve as the basis for future studies that seek to interrogate the molecular explanation for the various types of exDNA and their effects on biofilm formation. IMPORTANCEBacteria mostly exist as biofilm, a protective niche that promotes protection from the environment and nutrient uptake. By forming these structures, bacteria have caused recalcitrant antibiotic-resistant infections, contamination of dairy and seafood, and fouling equipment in the industry. A critical component that makes up the extracellular polymeric substances, the structural component of a biofilm, is the extracellular DNA secreted by the bacteria found in the biofilm. However, previous studies on DNA and biofilm formation have neglected the unique properties of nucleic acid and its high diversity. Our study aims at disentangling these DNA properties by monitoring their effect at inducing biofilm formation. By varying length, self vs non-self, and GC percentage, we used various microscopy techniques to visualize the structural composition of aVibrio hyugaensisbiofilm. We observed DNA-dependent biofilm stimulation in this organism, a novel function of DNA in biofilm biology. 
    more » « less
  3. Abstract Bacterial infections in cystic fibrosis (CF) patients are an emerging health issue and lead to a premature death. CF is a hereditary disease that creates a thick mucus in the lungs that is prone to bacterial biofilm formation, specificallyPseudomonas aeruginosabiofilms. These biofilms are very difficult to treat because many of them have antibiotic resistance that is worsened by the presence of extracellular DNA (eDNA). eDNA helps to stabilize biofilms and can bind antimicrobial compounds to lessen their effects. The metallo‐antimicrobial peptide Gaduscidin‐1 (Gad‐1) eradicates establishedP. aeruginosabiofilms through a combination of modes of action that includes nuclease activity that can cleave eDNA in biofilms. In addition, Gad‐1 exhibits synergistic activity when used with the antibiotics kanamycin and ciprofloxacin, thus making Gad‐1 a new lead compound for the potential treatment of bacterial biofilms in CF patients. 
    more » « less
  4. Whiteley, Marvin (Ed.)
    ABSTRACT Bacteria form multicellular aggregates called biofilms. A crucial component of these aggregates is a protective matrix that holds the community together. Biofilm matrix composition varies depending upon bacterial species but typically includes exopolysaccharides (EPS), proteins, and extracellular DNA.Pseudomonas aeruginosais a model organism for the study of biofilms, and in non-mucoid biofilms, it uses the structurally distinct EPS Psl and Pel, the EPS-binding protein CdrA, and eDNA as key matrix components. An interesting phenomenon that we and others have observed is that the periphery of a biofilm aggregate can be EPS-rich and contain very few cells. In this study, we investigated two possible models of assembly and dynamics of this EPS-rich peripheral region: (i) newly synthesized EPS is inserted and incorporated into the existing EPS-rich region at the periphery during biofilm aggregate growth or (ii) EPS is continuously turned over and newly synthesized EPS is deposited at the outermost edge of the aggregate. Our results support the latter model. Specifically, we observed that new EPS is continually deposited at the aggregate periphery, which is necessary for continued aggregate growth but not aggregate stability. We made similar observations in another paradigm biofilm-forming species,Vibrio cholerae. This pattern of deposition raises the question of how EPS is retained. Specifically, forP. aeruginosabiofilms, the matrix adhesin CdrA is thought to retain EPS. However, current thinking is that cell-associated CdrA is responsible for this retention, and it is not clear how CdrA might function in the relatively cell-free aggregate periphery. We observed that CdrA is enzymatically degraded during aggregate growth without negatively impacting biofilm stability and that cell-free CdrA can partially maintain aggregation and Psl retention. Overall, this study shows that the matrix ofP. aeruginosabiofilms undergoes both continuous synthesis of matrix material and matrix turnover to accommodate biofilm aggregate growth and that cell-free matrix can at least partially maintain biofilm aggregation and EPS localization. Furthermore, our similar observations forV. choleraebiofilms suggest that our findings may represent basic principles of aggregate assembly in bacteria. IMPORTANCEHere, we show that, to accommodate growing cellular biomass, newly produced Psl is deposited over existing Psl at the periphery of biofilm aggregates. We demonstrated thatV. choleraeemploys a similar mechanism with its biofilm matrix EPS, VPS. In addition, we found that the protease LasB is present in the biofilm matrix, resulting in degradation of CdrA to lower molecular weight cell-free forms. We then show that the released forms of CdrA are retained in the matrix and remain functional. Together, our findings support that theP. aeruginosabiofilm matrix is dynamic during the course of aggregate growth and that other species may employ similar mechanisms to remodel their matrix. 
    more » « less
  5. Abstract Microbial biofilms are of critical concern because of their recalcitrance to antimicrobials. Cold atmospheric plasmas (CAP) represent a promising biofilm remediation strategy as they generate reactive oxygen and nitrogen species (RONS), but mechanisms underpinning CAP‐biofilm interactions remain unknown. We assess the impact of treatment modality on biofilm inactivation and show that CAP killing ofStaphylococcus aureusbiofilms is dependent on treatment conditions, including solution chemistry. In dry treatments, biofilms are locally ablated due to plasma‐produced O flux. For saline‐submerged biofilms, while we show that ClOis generated at high concentrations in larger treatment volumes, CAP inactivation at low ClOconcentrations implicates other reaction pathways. Finally, we demonstrate CAP efficacy over conventional antimicrobials, underscoring its promise as a biofilm treatment approach. 
    more » « less