skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Minimally invasive sequential analyses of questioned paintings: Six experiments in art authentication
Abstract: Non-destructive and micro-destructive analyses play an important role in determining the authenticity of art works. These include determination of the composition and date of manufacture. Similar analyses are used for a range of forensic problems. However, the importance of “do no harm” to the object places a significant additional constraint beyond simply preserving evidence for future analyses. The rise in art theft and fraud cases recently and the need for rapid, non-destructive analyses to meet statute of limitations restrictions underscores the need for greater awareness and training in the analysis of works of art that may be forgeries or worth millions of dollars. A sequence of laboratories that address art authentication questions are shown in an order that minimizes sample usage and emphasizes the thought processes used in crime scene reconstruction. We outline six undergraduate laboratory exercises using a case study that includes novel wood and paint dating methods. We compare some simple methods to state-of-the-art instrumental analyses typically used in legal cases, using these to cross-validate the conclusions.  more » « less
Award ID(s):
2117144
PAR ID:
10547409
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Council of Forensic Science Educators
Date Published:
Journal Name:
The journal of forensic science education
ISSN:
2641-8533
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract East Asian inks are a major component of calligraphy, paintings, and prints in China, Japan, and Korea and are historically made from either pine soot or oil‐lamp soot mixed with a proteinaceous binder. Although the inks from the two different soot sources have different properties in East Asian works of art, no non‐destructive methods to differentiate them scientifically currently exist. Raman spectroscopy (RS) of carbonaceous materials is commonly used to extract information about their properties and has been applied here to East Asian inks. Soots used in making modern inks were collected from 10 sources in China and Japan and analyzed using RS. RS using 405‐, 633‐, and 785‐nm excitation has been able to differentiate pine soot from oil‐lamp soot, also called lampblack. In addition, principal component analysis (PCA) of only 785‐nm Raman spectra has been able to discriminate between two different soots used in a 19th‐century Japanese woodblock printing ofKaishien Gaden. In addition to allowing discrimination between inks on East Asian works of art, these results may be of use to other fields using carbonaceous materials. 
    more » « less
  2. Oysters are a vital keystone species in coastal ecosystems, providing significant economic, environmental, and cultural benefits. As the importance of oysters grows, so does the relevance of autonomous systems for their detection and monitoring. However, current monitoring strategies often rely on destructive methods. While manual identification of oysters from video footage is non-destructive, it is time-consuming, requires expert input, and is further complicated by the challenges of the underwater environment. To address these challenges, we propose a novel pipeline using stable diffusion to augment a collected real dataset with photorealistic synthetic data. This method enhances the dataset used to train a YOLOv10-based vision model. The model is then deployed and tested on an edge platform; Aqua2, an Autonomous Underwater Vehicle (AUV), achieving a state-of-the-art 0.657 mAP@50 for oyster detection. 
    more » « less
  3. null (Ed.)
    The use of non-metallic composites that are durable, low cost, and lightweight is growing fast in various industries. A commonly used form of these materials is in the shape of pipes that can be used, for instance, in oil and gas industry. Such pipes can be damaged due to material loss (defects and holes), erosions, and more which may cause major production failures or environmental mishaps. To prevent these issues, non-destructive testing (NDT) methods need to be employed for regular inspections of such components. Since traditional NDT methods are mainly used for metallic pipes, recently microwave imaging has been proposed as a promising approach for examination of non-metallic pipes. While microwave imaging can be employed for inspection of multiple layers of pipes, the effect of undesired eccentricity of the pipes can impose additional imaging errors. In this paper, for the first time, we study the effect of eccentricity of the pipes on the images reconstructed using near-field holographic microwave imaging when imaging double pipes. 
    more » « less
  4. null (Ed.)
    For the pulping process in a pulp & paper plant that uses wood as a raw material, it is important to have real-time knowledge about the moisture content of the woodchips so that the process can be optimized and/or controlled correspondingly to achieve satisfactory product quality while minimizing the consumption of energy and chemicals. Both destructive and non-destructive methods have been developed for estimating moisture content in woodchips, but these methods are often lab-based that cannot be implemented online, or too fragile to stand the harsh manufacturing environment. To address these limitations, we propose a non-destructive and economic approach based on 5 GHz Wi-Fi and use channel state information (CSI) to estimate the moisture content in woodchips. In addition, we propose to use statistics pattern analysis (SPA) to extract features from raw CSI data of amplitude and phase difference. The extracted features are then used for classification model building using linear discriminant analysis (LDA) and subspace discriminant (SD) classification. The woodchip moisture classification results are validated using the oven drying method. 
    more » « less
  5. Abstract Volumetric data provide unprecedented structural insight to the reproductive tract and add vital anatomical context to the relationships between organs. The morphology of the female reproductive tract in non-avian reptiles varies between species, corresponding to a broad range of reproductive modes and providing valuable insight to comparative investigations of reproductive anatomy. However, reproductive studies in reptilian models, such as the brown anole studied here, have historically relied on histological methods to understand the anatomy. While these methods are highly effective for characterizing the cell types present in each organ, histological methods lose the 3D relationships between images and leave the architecture of the organ system poorly understood. We present the first comprehensive volumetric analyses of the female brown anole reproductive tract using two non-invasive, non-destructive imaging modalities: micro-computed tomography (microCT) and optical coherence tomography (OCT). Both are specialized imaging technologies that facilitate high-throughput imaging and preserve three-dimensional information. This study represents the first time that microCT has been used to study all reproductive organs in this species and the very first time that OCT has been applied to this species. We show how the non-destructive volumetric imaging provided by each modality reveals anatomical context including orientation and relationships between reproductive organs of the anole lizard. In addition to broad patterns of morphology, both imaging modalities provide the high resolution necessary to capture details and key anatomical features of each organ. We demonstrate that classic histological features can be appreciated within whole-organ architecture in volumetric imaging using microCT and OCT, providing the complementary information necessary to understand the relationships between tissues and organs in the reproductive system. This side-by-side imaging analysis using microCT and OCT allows us to evaluate the specific advantages and limitations of these two methods for the female reptile reproductive system. 
    more » « less