skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: What can we learn from unlearnable datasets?
In an era of widespread web scraping, unlearnable dataset methods have the potential to protect data privacy by preventing deep neural networks from generalizing. But in addition to a number of practical limitations that make their use unlikely, we make a number of findings that call into question their ability to safeguard data. First, it is widely believed that neural networks trained on unlearnable datasets only learn shortcuts, simpler rules that are not useful for generalization. In contrast, we find that networks actually can learn useful features that can be reweighed for high test performance, suggesting that image protection is not assured. Unlearnable datasets are also believed to induce learning shortcuts through linear separability of added perturbations. We provide a counterexample, demonstrating that linear separability of perturbations is not a necessary condition. To emphasize why linearly separable perturbations should not be relied upon, we propose an orthogonal projection attack which allows learning from unlearnable datasets published in ICML 2021 and ICLR 2023. Our proposed attack is significantly less complex than recently proposed techniques.  more » « less
Award ID(s):
2229885 2212182
PAR ID:
10547416
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Advances in Neural Information Processing Systems
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The prevalence of data scraping from social media as a means to obtain datasets has led to growing concerns regarding unauthorized use of data. Data poisoning attacks have been proposed as a bulwark against scraping, as they make data "unlearnable'' by adding small, imperceptible perturbations. Unfortunately, existing methods require knowledge of both the target architecture and the complete dataset so that a surrogate network can be trained, the parameters of which are used to generate the attack. In this work, we introduce autoregressive (AR) poisoning, a method that can generate poisoned data without access to the broader dataset. The proposed AR perturbations are generic, can be applied across different datasets, and can poison different architectures. Compared to existing unlearnable methods, our AR poisons are more resistant against common defenses such as adversarial training and strong data augmentations. Our analysis further provides insight into what makes an effective data poison. 
    more » « less
  2. The performance of deep neural networks often deteriorates in out-of-distribution settings due to relying on easy-to-learn but unreliable spurious associations known as shortcuts. Recent work attempting to mitigate shortcut learning relies on a priori knowledge of what the shortcut is and requires a strict overlap assumption with respect to the shortcut and the labels. In this paper, we present a causally-motivated teacher-student framework that encourages invariance to all shortcuts by leveraging privileged mediation information. The Teaching Invariance using Privileged Mediation Information (TIPMI) framework distills knowledge from a counterfactually invariant teacher trained using privileged mediation information to a student predictor that uses non-privileged features. We analyze the theoretical properties of our proposed estimator, showing that TIPMI promotes invariance to multiple unknown shortcuts and has better finite-sample efficiency. We empirically verify our theoretical findings by showing that TIPMI outperforms several state-of-the-art methods on two vision datasets and one language dataset. 
    more » « less
  3. During training, models can exploit spurious correlations as shortcuts, resulting in poor generalization performance when shortcuts do not persist. In this work, assuming access to a representation based on domain knowledge (i.e., known concepts) that is invariant to shortcuts, we aim to learn robust and accurate models from biased training data. In contrast to previous work, we do not rely solely on known concepts, but allow the model to also learn unknown concepts. We propose two approaches for mitigating shortcuts that incorporate domain knowledge, while accounting for potentially important yet unknown concepts. The first approach is two-staged. After fitting a model using known concepts, it accounts for the residual using unknown concepts. While flexible, we show that this approach is vulnerable when shortcuts are correlated with the unknown concepts. This limitation is addressed by our second approach that extends a recently proposed regularization penalty. Applied to two real-world datasets, we demonstrate that both approaches can successfully mitigate shortcut learning. 
    more » « less
  4. null (Ed.)
    Supervised dimensionality reduction for sequence data learns a transformation that maps the observations in sequences onto a low-dimensional subspace by maximizing the separability of sequences in different classes. It is typically more challenging than conventional dimensionality reduction for static data, because measuring the separability of sequences involves non-linear procedures to manipulate the temporal structures. In this paper, we propose a linear method, called Order-preserving Wasserstein Discriminant Analysis (OWDA), and its deep extension, namely DeepOWDA, to learn linear and non-linear discriminative subspace for sequence data, respectively. We construct novel separability measures between sequence classes based on the order-preserving Wasserstein (OPW) distance to capture the essential differences among their temporal structures. Specifically, for each class, we extract the OPW barycenter and construct the intra-class scatter as the dispersion of the training sequences around the barycenter. The inter-class distance is measured as the OPW distance between the corresponding barycenters. We learn the linear and non-linear transformations by maximizing the inter-class distance and minimizing the intra-class scatter. In this way, the proposed OWDA and DeepOWDA are able to concentrate on the distinctive differences among classes by lifting the geometric relations with temporal constraints. Experiments on four 3D action recognition datasets show the effectiveness of OWDA and DeepOWDA. 
    more » « less
  5. Models produced by machine learning, particularly deep neural networks, are state-of-the-art for many machine learning tasks and demonstrate very high prediction accuracy. Unfortunately, these models are also very brittle and vulnerable to specially crafted adversarial examples. Recent results have shown that accuracy of these models can be reduced from close to hundred percent to below 5\% using adversarial examples. This brittleness of deep neural networks makes it challenging to deploy these learning models in security-critical areas where adversarial activity is expected, and cannot be ignored. A number of methods have been recently proposed to craft more effective and generalizable attacks on neural networks along with competing efforts to improve robustness of these learning models. But the current approaches to make machine learning techniques more resilient fall short of their goal. Further, the succession of new adversarial attacks against proposed methods to increase neural network robustness raises doubts about a foolproof approach to robustify machine learning models against all possible adversarial attacks. In this paper, we consider the problem of detecting adversarial examples. This would help identify when the learning models cannot be trusted without attempting to repair the models or make them robust to adversarial attacks. This goal of finding limitations of the learning model presents a more tractable approach to protecting against adversarial attacks. Our approach is based on identifying a low dimensional manifold in which the training samples lie, and then using the distance of a new observation from this manifold to identify whether this data point is adversarial or not. Our empirical study demonstrates that adversarial examples not only lie farther away from the data manifold, but this distance from manifold of the adversarial examples increases with the attack confidence. Thus, adversarial examples that are likely to result into incorrect prediction by the machine learning model is also easier to detect by our approach. This is a first step towards formulating a novel approach based on computational geometry that can identify the limiting boundaries of a machine learning model, and detect adversarial attacks. 
    more » « less