skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2212182

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract First-order optimization methods tend to inherently favor certain solutions over others when minimizing an underdetermined training objective that has multiple global optima. This phenomenon, known asimplicit bias, plays a critical role in understanding the generalization capabilities of optimization algorithms. Recent research has revealed that in separable binary classification tasks gradient-descent-based methods exhibit an implicit bias for the$$\ell _2$$ 2 -maximal margin classifier. Similarly, generic optimization methods, such as mirror descent and steepest descent, have been shown to converge to maximal margin classifiers defined by alternative geometries. While gradient-descent-based algorithms provably achievefastimplicit bias rates, corresponding rates in the literature for generic optimization methods are relatively slow. To address this limitation, we present a series of state-of-the-art implicit bias rates for mirror descent and steepest descent algorithms. Our primary technique involves transforming a generic optimization algorithm into an online optimization dynamic that solves a regularized bilinear game, providing a unified framework for analyzing the implicit bias of various optimization methods. Our accelerated rates are derived by leveraging the regret bounds of online learning algorithms within this game framework. We then show the flexibility of this framework by analyzing the implicit bias inadversarial training, and again obtain significantly improved convergence rates. 
    more » « less
  2. Free, publicly-accessible full text available June 17, 2026
  3. Free, publicly-accessible full text available June 1, 2026
  4. Free, publicly-accessible full text available March 5, 2026