Humans can leverage physical interaction to teach robot arms. This physical interaction takes multiple forms depending on the task, the user, and what the robot has learned so far. State-of-the-art approaches focus on learning from a single modality, or combine some interaction types. Some methods do so by assuming that the robot has prior information about the features of the task and the reward structure. By contrast, in this article, we introduce an algorithmic formalism that unites learning from demonstrations, corrections, and preferences. Our approach makes no assumptions about the tasks the human wants to teach the robot; instead, we learn a reward model from scratch by comparing the human’s input to nearby alternatives, i.e., trajectories close to the human’s feedback. We first derive a loss function that trains an ensemble of reward models to match the human’s demonstrations, corrections, and preferences. The type and order of feedback is up to the human teacher: We enable the robot to collect this feedback passively or actively. We then apply constrained optimization to convert our learned reward into a desired robot trajectory. Through simulations and a user study, we demonstrate that our proposed approach more accurately learns manipulation tasks from physical human interaction than existing baselines, particularly when the robot is faced with new or unexpected objectives. Videos of our user study are available at https://youtu.be/FSUJsTYvEKU 
                        more » 
                        « less   
                    
                            
                            Reward Learning from Suboptimal Demonstrations with Applications in Surgical Electrocautery
                        
                    
    
            Automating robotic surgery via learning from demonstration (LfD) techniques is extremely challenging. This is because surgical tasks often involve sequential decisionmaking processes with complex interactions of physical objects and have low tolerance for mistakes. Prior works assume that all demonstrations are fully observable and optimal, which might not be practical in the real world. This paper introduces a sample-efficient method that learns a robust reward function from a limited amount of ranked suboptimal demonstrations consisting of partial-view point cloud observations. The method then learns a policy by optimizing the learned reward function using reinforcement learning (RL). We show that using a learned reward function to obtain a policy is more robust than pure imitation learning. We apply our approach on a physical surgical electrocautery task and demonstrate that our method can perform well even when the provided demonstrations are suboptimal and the observations are highdimensional point clouds. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2133027
- PAR ID:
- 10547468
- Publisher / Repository:
- International Symposium on Medical Robotics (ISMR)
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The difficulty in specifying rewards for many real world problems has led to an increased focus on learning rewards from human feedback, such as demonstrations. However, there are often many different reward functions that explain the human feedback, leaving agents with uncertainty over what the true reward function is. While most policy optimization approaches handle this uncertainty by optimizing for expected performance, many applications demand risk-averse behavior. We derive a novel policy gradient-style robust optimization approach, PG-BROIL, that optimizes a soft-robust objective that balances expected performance and risk. To the best of our knowledge, PG-BROIL is the first policy optimization algorithm robust to a distribution of reward hypotheses which can scale to continuous MDPs. Results suggest that PG-BROIL can produce a family of behaviors ranging from risk-neutral to risk-averse and outperforms state-of-the-art imitation learning algorithms when learning from ambiguous demonstrations by hedging against uncertainty, rather than seeking to uniquely identify the demonstrator’s reward function.more » « less
- 
            Applying reinforcement learning (RL) to sparse reward domains is notoriously challenging due to insufficient guiding signals. Common RL techniques for addressing such domains include (1) learning from demonstrations and (2) curriculum learning. While these two approaches have been studied in detail, they have rarely been considered together. This paper aims to do so by introducing a principled task-phasing approach that uses demonstrations to automatically generate a curriculum sequence. Using inverse RL from (suboptimal) demonstrations we define a simple initial task. Our task phasing approach then provides a framework to gradually increase the complexity of the task all the way to the target task, while retuning the RL agent in each phasing iteration. Two approaches for phasing are considered: (1) gradually increasing the proportion of time steps an RL agent is in control, and (2) phasing out a guiding informative reward function. We present conditions that guarantee the convergence of these approaches to an optimal policy. Experimental results on 3 sparse reward domains demonstrate that our task-phasing approaches outperform state-of-the-art approaches with respect to asymptotic performance.more » « less
- 
            An option is a short-term skill consisting of a control policy for a specified region of the state space, and a termination condition recognizing leaving that region. In prior work, we proposed an algorithm called Deep Discovery of Options (DDO) to discover options to accelerate reinforcement learning in Atari games. This paper studies an extension to robot imitation learning, called Discovery of Deep Continuous Options (DDCO), where low-level continuous control skills parametrized by deep neural networks are learned from demonstrations. We extend DDO with: (1) a hybrid categorical–continuous distribution model to parametrize high-level policies that can invoke discrete options as well continuous control actions, and (2) a cross-validation method that relaxes DDO’s requirement that users specify the number of options to be discovered. We evaluate DDCO in simulation of a 3-link robot in the vertical plane pushing a block with friction and gravity, and in two physical experiments on the da Vinci surgical robot, needle insertion where a needle is grasped and inserted into a silicone tissue phantom, and needle bin picking where needles and pins are grasped from a pile and categorized into bins. In the 3-link arm simulation, results suggest that DDCO can take 3x fewer demonstrations to achieve the same reward compared to a baseline imitation learning approach. In the needle insertion task, DDCO was successful 8/10 times compared to the next most accurate imitation learning baseline 6/10. In the surgical bin picking task, the learned policy successfully grasps a single object in 66 out of 99 attempted grasps, and in all but one case successfully recovered from failed grasps by retrying a second time.more » « less
- 
            We study the problem of cross-embodiment inverse reinforcement learning, where we wish to learn a reward function from video demonstrations in one or more embodiments and then transfer the learned reward to a different embodiment (e.g., different action space, dynamics, size, shape, etc.). Learning reward functions that transfer across embodiments is important in settings such as teaching a robot a policy via human video demonstrations or teaching a robot to imitate a policy from another robot with a different embodiment. However, prior work has only focused on cases where near-optimal demonstrations are available, which is often difficult to ensure. By contrast, we study the setting of cross-embodiment reward learning from mixed-quality demonstrations. We demonstrate that prior work struggles to learn generalizable reward representations when learning from mixed-quality data. We then analyze several techniques that leverage human feedback for representation learning and alignment to enable effective cross-embodiment learning. Our results give insight into how different representation learning techniques lead to qualitatively different reward shaping behaviors and the importance of human feedback when learning from mixed-quality, mixed-embodiment data.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    