The K User Linear Computation Broadcast (LCBC) problem is comprised of d dimensional data (from Fq), that is fully available to a central server, and K users, who require various linear computations of the data, and have prior knowledge of various linear functions of the data as side-information. The optimal broadcast cost is the minimum number of q-ary symbols to be broadcast by the server per computation instance, for every user to retrieve its desired computation. The reciprocal of the optimal broadcast cost is called the capacity. The main contribution of this paper is the exact capacity characterization for the K = 3 user LCBC for all cases, i.e., for arbitrary finite fields Fq, arbitrary data dimension d, and arbitrary linear side-informations and demands at each user. A remarkable aspect of the converse (impossibility result) is that unlike the 2 user LCBC whose capacity was determined previously, the entropic formulation (where the entropies of demands and side-informations are specified, but not their functional forms) is insufficient to obtain a tight converse for the 3 user LCBC. Instead, the converse exploits functional submodularity. Notable aspects of achievability include sufficiency of vector linear coding schemes, subspace decompositions that parallel those found previously by Yao Wang in degrees of freedom (DoF) studies of wireless broadcast networks, and efficiency tradeoffs that lead to a constrained waterfilling solution. Random coding arguments are invoked to resolve compatibility issues that arise as each user has a different view of the subspace decomposition, conditioned on its own side-information. 
                        more » 
                        « less   
                    
                            
                            On the Generic Capacity of K -User Symmetric Linear Computation Broadcast
                        
                    
    
            Linear computation broadcast (LCBC) refers to a setting with d dimensional data stored at a central server, where K users, each with some prior linear side-information, wish to compute various linear combinations of the data. For each computation instance, the data is represented as a d-dimensional vector with elements in a finite field Fpn where pn is a power of a prime. The computation is to be performed many times, and the goal is to determine the minimum amount of information per computation instance that must be broadcast to satisfy all the users. The reciprocal of the optimal broadcast cost per computation instance is the capacity of LCBC. The capacity is known for up to K = 3 users. Since LCBC includes index coding as a special case, large K settings of LCBC are at least as hard as the index coding problem. As such the general LCBC problem is beyond our reach and we do not pursue it. Instead of the general setting (all cases), by focusing on the generic setting (almost all cases) this work shows that the generic capacity of the symmetric LCBC (where every user has m′ dimensions of side-information and m dimensions of demand) for large number of users (K ≥ d suffices) is Cg = 1/∆g, where ∆g = min{ max{0, d − m' }, dm/(m+m′)}, is the broadcast cost that is both achievable and unbeatable asymptotically almost surely for large n, among all LCBC instances with the given parameters p, K, d, m, m′. Relative to baseline schemes of random coding or separate transmissions, Cg shows an extremal gain by a factor of K as a function of number of users, and by a factor of ≈ d/4 as a function of data dimensions, when optimized over remaining parameters. For arbitrary number of users, the generic capacity of the symmetric LCBC is characterized within a factor of 2. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2221379
- PAR ID:
- 10547478
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Information Theory
- Volume:
- 70
- Issue:
- 5
- ISSN:
- 0018-9448
- Page Range / eLocation ID:
- 3693 to 3717
- Subject(s) / Keyword(s):
- Computation broadcast, generic capacity.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A Chor–Goldreich (CG) source is a sequence of random variables X = X1 ∘ … ∘ Xt, where each Xi ∼ {0,1}d and Xi has δ d min-entropy conditioned on any fixing of X1 ∘ … ∘ Xi−1. The parameter 0<δ≤ 1 is the entropy rate of the source. We typically think of d as constant and t as growing. We extend this notion in several ways, defining almost CG sources. Most notably, we allow each Xi to only have conditional Shannon entropy δ d. We achieve pseudorandomness results for almost CG sources which were not known to hold even for standard CG sources, and even for the weaker model of Santha–Vazirani sources: We construct a deterministic condenser that on input X, outputs a distribution which is close to having constant entropy gap, namely a distribution Z ∼ {0,1}m for m ≈ δ dt with min-entropy m−O(1). Therefore, we can simulate any randomized algorithm with small failure probability using almost CG sources with no multiplicative slowdown. This result extends to randomized protocols as well, and any setting in which we cannot simply cycle over all seeds, and a “one-shot” simulation is needed. Moreover, our construction works in an online manner, since it is based on random walks on expanders. Our main technical contribution is a novel analysis of random walks, which should be of independent interest. We analyze walks with adversarially correlated steps, each step being entropy-deficient, on good enough lossless expanders. We prove that such walks (or certain interleaved walks on two expanders), starting from a fixed vertex and walking according to X1∘ … ∘ Xt, accumulate most of the entropy in X.more » « less
- 
            Given a metric space ℳ = (X,δ), a weighted graph G over X is a metric t-spanner of ℳ if for every u,v ∈ X, δ(u,v) ≤ δ_G(u,v) ≤ t⋅ δ(u,v), where δ_G is the shortest path metric in G. In this paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given a sequence of points (s₁, …, s_n), where the points are presented one at a time (i.e., after i steps, we have seen S_i = {s₁, … , s_i}). The algorithm is allowed to add edges to the spanner when a new point arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a t-spanner G_i for S_i for all i, while minimizing the number of edges, and their total weight. Under the L₂-norm in ℝ^d for arbitrary constant d ∈ ℕ, we present an online (1+ε)-spanner algorithm with competitive ratio O_d(ε^{-d} log n), improving the previous bound of O_d(ε^{-(d+1)}log n). Moreover, the spanner maintained by the algorithm has O_d(ε^{1-d}log ε^{-1})⋅ n edges, almost matching the (offline) optimal bound of O_d(ε^{1-d})⋅ n. In the plane, a tighter analysis of the same algorithm provides an almost quadratic improvement of the competitive ratio to O(ε^{-3/2}logε^{-1}log n), by comparing the online spanner with an instance-optimal spanner directly, bypassing the comparison to an MST (i.e., lightness). As a counterpart, we design a sequence of points that yields a Ω_d(ε^{-d}) lower bound for the competitive ratio for online (1+ε)-spanner algorithms in ℝ^d under the L₁-norm. Then we turn our attention to online spanners in general metrics. Note that, it is not possible to obtain a spanner with stretch less than 3 with a subquadratic number of edges, even in the offline setting, for general metrics. We analyze an online version of the celebrated greedy spanner algorithm, dubbed ordered greedy. With stretch factor t = (2k-1)(1+ε) for k ≥ 2 and ε ∈ (0,1), we show that it maintains a spanner with O(ε^{-1}logε^{-1})⋅ n^{1+1/k} edges and O(ε^{-1}n^{1/k}log² n) lightness for a sequence of n points in a metric space. We show that these bounds cannot be significantly improved, by introducing an instance that achieves an Ω(1/k⋅ n^{1/k}) competitive ratio on both sparsity and lightness. Furthermore, we establish the trade-off among stretch, number of edges and lightness for points in ultrametrics, showing that one can maintain a (2+ε)-spanner for ultrametrics with O(ε^{-1}logε^{-1})⋅ n edges and O(ε^{-2}) lightness.more » « less
- 
            Given a metric space ℳ = (X,δ), a weighted graph G over X is a metric t-spanner of ℳ if for every u,v ∈ X, δ(u,v) ≤ δ_G(u,v) ≤ t⋅ δ(u,v), where δ_G is the shortest path metric in G. In this paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given a sequence of points (s₁, …, s_n), where the points are presented one at a time (i.e., after i steps, we have seen S_i = {s₁, … , s_i}). The algorithm is allowed to add edges to the spanner when a new point arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a t-spanner G_i for S_i for all i, while minimizing the number of edges, and their total weight. Under the L₂-norm in ℝ^d for arbitrary constant d ∈ ℕ, we present an online (1+ε)-spanner algorithm with competitive ratio O_d(ε^{-d} log n), improving the previous bound of O_d(ε^{-(d+1)}log n). Moreover, the spanner maintained by the algorithm has O_d(ε^{1-d}log ε^{-1})⋅ n edges, almost matching the (offline) optimal bound of O_d(ε^{1-d})⋅ n. In the plane, a tighter analysis of the same algorithm provides an almost quadratic improvement of the competitive ratio to O(ε^{-3/2}logε^{-1}log n), by comparing the online spanner with an instance-optimal spanner directly, bypassing the comparison to an MST (i.e., lightness). As a counterpart, we design a sequence of points that yields a Ω_d(ε^{-d}) lower bound for the competitive ratio for online (1+ε)-spanner algorithms in ℝ^d under the L₁-norm. Then we turn our attention to online spanners in general metrics. Note that, it is not possible to obtain a spanner with stretch less than 3 with a subquadratic number of edges, even in the offline setting, for general metrics. We analyze an online version of the celebrated greedy spanner algorithm, dubbed ordered greedy. With stretch factor t = (2k-1)(1+ε) for k ≥ 2 and ε ∈ (0,1), we show that it maintains a spanner with O(ε^{-1}logε^{-1})⋅ n^{1+1/k} edges and O(ε^{-1}n^{1/k}log² n) lightness for a sequence of n points in a metric space. We show that these bounds cannot be significantly improved, by introducing an instance that achieves an Ω(1/k⋅ n^{1/k}) competitive ratio on both sparsity and lightness. Furthermore, we establish the trade-off among stretch, number of edges and lightness for points in ultrametrics, showing that one can maintain a (2+ε)-spanner for ultrametrics with O(ε^{-1}logε^{-1})⋅ n edges and O(ε^{-2}) lightness.more » « less
- 
            Morin, Pat; Oh, Eunjin (Ed.)Motivated by the problem of estimating bottleneck capacities on the Internet, we formulate and study the problem of vantage point selection. We are given a graph G = (V, E) whose edges E have unknown capacity values that are to be discovered. Probes from a vantage point, i.e, a vertex v ∈ V, along shortest paths from v to all other vertices, reveal bottleneck edge capacities along each path. Our goal is to select k vantage points from V that reveal the maximum number of bottleneck edge capacities. We consider both a non-adaptive setting where all k vantage points are selected before any bottleneck capacity is revealed, and an adaptive setting where each vantage point selection instantly reveals bottleneck capacities along all shortest paths starting from that point. In the non-adaptive setting, by considering a relaxed model where edge capacities are drawn from a random permutation (which still leaves the problem of maximizing the expected number of revealed edges NP-hard), we are able to give a 1-1/e approximate algorithm. In the adaptive setting we work with the least permissive model where edge capacities are arbitrarily fixed but unknown. We compare with the best solution for the particular input instance (i.e. by enumerating all choices of k tuples), and provide both lower bounds on instance optimal approximation algorithms and upper bounds for trees and planar graphs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    