skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on May 13, 2025

Title: Enhancing Visual Inertial SLAM with Magnetic Measurements
This paper presents an extension to visual inertial odometry (VIO) by introducing tightly-coupled fusion of magnetometer measurements. A sliding window of keyframes is optimized by minimizing re-projection errors, relative inertial errors, and relative magnetometer orientation errors. The results of IMU orientation propagation are used to efficiently transform magnetometer measurements between frames producing relative orientation constraints between consecutive frames. The soft and hard iron effects are calibrated using an ellipsoid fitting algorithm. The introduction of magnetometer data results in significant reductions in the orientation error and also in recovery of the true yaw orientation with respect to the magnetic north. The proposed framework operates in all environments with slow-varying magnetic fields, mainly outdoors and underwater. We have focused our work on the underwater domain, especially in underwater caves, as the narrow passage and turbulent flow make it difficult to perform loop closures and reset the localization drift. The underwater caves present challenges to VIO due to the absence of ambient light and the confined nature of the environment, while also being a crucial source of fresh water and providing valuable historical records. Experimental results from underwater caves demonstrate the improvements in accuracy and robustness introduced by the proposed VIO extension.  more » « less
Award ID(s):
2024741 1943205
PAR ID:
10547542
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-8457-4
Page Range / eLocation ID:
10012 to 10019
Format(s):
Medium: X
Location:
Yokohama, Japan
Sponsoring Org:
National Science Foundation
More Like this
  1. Vision-based state estimation is challenging in underwater environments due to color attenuation, low visibility and floating particulates. All visual-inertial estimators are prone to failure due to degradation in image quality. However, underwater robots are required to keep track of their pose during field deployments. We propose robust estimator fusing the robot's dynamic and kinematic model with proprioceptive sensors to propagate the pose whenever visual-inertial odometry (VIO) fails. To detect the VIO failures, health tracking is used, which enables switching between pose estimates from VIO and a kinematic estimator. Loop closure implemented on weighted posegraph for global trajectory optimization. Experimental results from an Aqua2 Autonomous Underwater Vehicle field deployments demonstrates the robustness of our approach over different underwater environments such as over shipwrecks and coral reefs. The proposed hybrid approach is robust to VIO failures producing consistent trajectories even in harsh conditions. 
    more » « less
  2. IEEE (Ed.)
    This paper addresses the robustness problem of visual-inertial state estimation for underwater operations. Underwater robots operating in a challenging environment are required to know their pose at all times. All vision-based localization schemes are prone to failure due to poor visibility conditions, color loss, and lack of features. The proposed approach utilizes a model of the robot's kinematics together with proprioceptive sensors to maintain the pose estimate during visual-inertial odometry (VIO) failures. Furthermore, the trajectories from successful VIO and the ones from the model-driven odometry are integrated in a coherent set that maintains a consistent pose at all times. Health-monitoring tracks the VIO process ensuring timely switches between the two estimators. Finally, loop closure is implemented on the overall trajectory. The resulting framework is a robust estimator switching between model-based and visual-inertial odometry (SM/VIO). Experimental results from numerous deployments of the Aqua2 vehicle demonstrate the robustness of our approach over coral reefs and a shipwreck. 
    more » « less
  3. This work presents an integrated solution for head orientation estimation, which is a critical component for applications of virtual and augmented reality systems. The proposed solution builds upon the measurements from the inertial sensors and magnetometer added to an instrumented helmet, and an orientation estimation algorithm is developed to mitigate the effect of bias introduced by noise in the gyroscope signal. Convolutional Neural Network (CNN) techniques are introduced to develop a dynamic orientation estimation algorithm with a structure motivated by complementary filters and trained on data collected to represent a wide range of head motion profiles. The proposed orientation estimation method is evaluated experimentally and compared to both learning and non-learning-based orientation estimation algorithms found in the literature for comparable applications. Test results support the advantage of the proposed CNN-based solution, particularly for motion profiles with high acceleration disturbance that are characteristic of head motion.

     
    more » « less
  4. In this paper we present a complete framework for Underwater SLAM utilizing a single inexpensive sensor. Over the recent years, imaging technology of action cameras is producing stunning results even under the challenging conditions of the underwater domain. The GoPro 9 camera provides high definition video in synchronization with an Inertial Measurement Unit (IMU) data stream encoded in a single mp4 file. The visual inertial SLAM framework is augmented to adjust the map after each loop closure. Data collected at an artificial wreck of the coast of South Carolina and in caverns and caves in Florida demonstrate the robustness of the proposed approach in a variety of conditions. 
    more » « less
  5. This paper presents a systematic approach on realtime reconstruction of an underwater environment using Sonar, Visual, Inertial, and Depth data. In particular, low lighting conditions, or even complete absence of natural light inside caves, results in strong lighting variations, e.g., the cone of the artificial video light intersecting underwater structures, and the shadow contours. The proposed method utilizes the well defined edges between well lit areas and darkness to provide additional features, resulting into a denser 3D point cloud than the usual point clouds from a Visual SLAM system. Experimental results in an underwater cave at Ginnie Springs, FL, with a custommade underwater sensor suite demonstrate the performance of our system. This will enable more robust navigation of AUVs using the denser 3D point cloud to detect obstacles and achieve higher resolution reconstructions. 
    more » « less