Heritable symbionts display a wide variety of transmission strategies to travel from one insect generation to the next. Parasitoid wasps, one of the most diverse insect groups, maintain several heritable associations with viruses that are beneficial for wasp survival during their development as parasites of other insects. Most of these beneficial viral entities are strictly transmitted through the wasp germline as endogenous viral elements within wasp genomes. However, a beneficial poxvirus inherited by Diachasmimorpha longicaudata wasps, known as Diachasmimorpha longicaudata entomopoxvirus (DlEPV), is not integrated into the wasp genome and therefore may employ different tactics to infect future wasp generations. Here, we demonstrated that transmission of DlEPV is primarily dependent on parasitoid wasps, since viral transmission within fruit fly hosts of the wasps was limited to injection of the virus directly into the larval fly body cavity. Additionally, we uncovered a previously undocumented form of posthatch transmission for a mutualistic virus that entails external acquisition and localization of the virus within the adult wasp venom gland. We showed that this route is extremely effective for vertical and horizontal transmission of the virus within D. longicaudata wasps. Furthermore, the beneficial phenotype provided by DlEPV during parasitism was also transmitted with perfect efficiency, indicating an effective mode of symbiont spread to the advantage of infected wasps. These results provide insight into the transmission of beneficial viruses among insects and indicate that viruses can share features with cellular microbes during their evolutionary transitions into symbionts.
more »
« less
Fine-tuned thin-plate spline motion model for manipulating social information in paper-wasp colonies
Several species of Polistes paper wasp are well known for their social hierarchies and the ability for individual wasps to modulate their social behaviors based on recognizable facial features of other wasps. For example, wasps that observe an aggressive social interaction between two other wasps will later behave differently toward the winner and loser of that interaction. Being able to alter the physical appearance of wasps~(e.g., with paint) has allowed for testing hypothetical roles of individual recognition in hierarchy formation, which is how researchers know that wasps are attending to faces specifically. However, these physical methods are limited in their scope. Social insects who respond to visual stimuli from other insects have been shown to give the same responses to playbacks of video recordings of those stimuli, which suggests that there may be a role for generative methods in social-insect research. Being able to computationally change the faces of individual wasps in a video recording of wasp social interactions would greatly expand the experimental toolbox of the behavioral researcher. Toward this end, we evaluate the use of an existing annotation-free model for image animation by motion transfer, the thin-plate spline motion model, for creating realistic videos that depict the face of a paper wasp performing behaviors recorded by another. Not needing to pre-define important landmarks is a strength of this method for this application space, but we find that "deep faking wasps" poses unique and non-trivial problems that still need to be solved before off-the-shelf motion transfer models can be used in the insect behavioral laboratory.
more »
« less
- Award ID(s):
- 2319438
- PAR ID:
- 10547703
- Editor(s):
- Waldmann, Urs; Wu, Shangzhe; Yang, Gengshan; Zamansky, Anna
- Publisher / Repository:
- 2024 Computer Vision for Animal Behavior Tracking and Modeling (CV4Animals at CVPR 2024)
- Date Published:
- Format(s):
- Medium: X
- Location:
- Seattle, WA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT For insects known as parasitoid wasps, successful development as a parasite results in the death of the host insect. As a result of this lethal interaction, wasps and their hosts have coevolved strategies to gain an advantage in this evolutionary arms race. Although normally considered to be strict pathogens, some viruses have established persistent infections within parasitoid wasp lineages and are beneficial to wasps during parasitism. Heritable associations between viruses and parasitoid wasps have evolved independently multiple times, but most of these systems remain largely understudied with respect to viral origin, transmission and replication strategies of the virus, and interactions between the virus and host insects. Here, we report a detailed characterization of Diachasmimorpha longicaudata entomopoxvirus (DlEPV), a poxvirus found within the venom gland of Diachasmimorpha longicaudata wasps. Our results show that DlEPV exhibits similar but distinct transmission and replication dynamics compared to those of other parasitoid viral elements, including vertical transmission of the virus within wasps, as well as virus replication in both female wasps and fruit fly hosts. Functional assays demonstrate that DlEPV is highly virulent within fly hosts, and wasps without DlEPV have severely reduced parasitism success compared to those with a typical viral load. Taken together, the data presented in this study illustrate a novel case of beneficial virus evolution, in which a virus of unique origin has undergone convergent evolution with other viral elements associated with parasitoid wasps to provide an analogous function throughout parasitism. IMPORTANCE Viruses are generally considered to be disease-causing agents, but several instances of beneficial viral elements have been identified in insects called parasitoid wasps. These virus-derived entities are passed on through wasp generations and enhance the success of the wasps’ parasitic life cycle. Many parasitoid-virus partnerships studied to date exhibit common features among independent cases of this phenomenon, including a mother-to-offspring route of virus transmission, a restricted time and location for virus replication, and a positive effect of virus activity on wasp survival. Our characterization of Diachasmimorpha longicaudata entomopoxvirus (DlEPV), a poxvirus found in Diachasmimorpha longicaudata parasitoid wasps, represents a novel example of beneficial virus evolution. Here, we show that DlEPV exhibits functional similarities to known parasitoid viral elements that support its comparable role during parasitism. Our results also demonstrate unique differences that suggest DlEPV is more autonomous than other long-term viral associations described in parasitoid wasps.more » « less
-
Eusocial insects, such as bees, ants, and wasps of the Hymenoptera and termites of the Blattodea, are able to generate remarkable diversity in morphology and behavior despite being genetically uniform within a colony. Most eusocial insect species display caste structures in which reproductive ability is possessed by a single or a few queens while all other colony members act as workers. However, in some species, caste structure is somewhat plastic, and individuals may switch from one caste or behavioral phenotype to another in response to certain environmental cues. As different castes normally share a common genetic background, it is believed that much of this observed within-colony diversity results from transcriptional differences between individuals. This suggests that epigenetic mechanisms, featured by modified gene expression without changing genes themselves, may play an important role in eusocial insects. Indeed, epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs, have been shown to influence eusocial insects in multiple aspects, along with typical genetic regulation. This review summarizes the most recent findings regarding such mechanisms and their diverse roles in eusocial insects.more » « less
-
Abstract Many social insects construct nests, which are fundamentally important to the success and survival of the colony. We review recent work on understanding the construction and function of social insect nests and attempt to identify general principles of collective construction and nest architecture in insect societies. We look across taxa, including termites, ants, social bees, and social wasps, specifically focusing on experimental studies that have elucidated the mechanisms by which insect nests are successfully built. We find that selecting materials and nest sites are crucial decisions made by social insects that impact both the resulting nest architecture and colony survival. Social insects utilize cohesive, malleable material to build nests. Often, nests are constructed in a modular manner, allowing social insects to exploit a variety of materials while growing to accommodate population explosions from a few individuals to millions. We note that the regulatory principles that coordinate building behaviors are consistent across taxa. Specifically, encounter rate, positive and negative feedback cycles, stigmergy, and genetic influence all govern the actions of multiple builders and result in a cohesive, functional structure. We further consider empirical studies that demonstrate how nests impact collective behaviors and help insect societies flourish. We find that all social insect nests serve the same key functions: to protect residents and to offer a means of organizing their collective behaviors. Ultimately, we expand our analysis to experiments utilizing robot models of societies, which aim to uncover unifying themes of construction and space use by collectives. Overall, we show that social insect nests represent engineering and construction marvels that provide fundamental insights into how biological collectives succeed in the natural environment, and we suggest that the use of robotic models may provide insight into these fascinating behaviors and structures.more » « less
-
Taylor, Scott; Zelditch, Miriam (Ed.)Abstract Host shifts to new plant species can drive speciation for plant-feeding insects, but how commonly do host shifts also drive diversification for the parasites of those same insects? Oak gall wasps induce galls on oak trees and shifts to novel tree hosts and new tree organs have been implicated as drivers of oak gall wasp speciation. Gall wasps are themselves attacked by many insect parasites, which must find their hosts on the correct tree species and organ, but also must navigate the morphologically variable galls with which they interact. Thus, we ask whether host shifts to new trees, organs, or gall morphologies correlate with gall parasite diversification. We delimit species and infer phylogenies for two genera of gall kleptoparasites, Synergus and Ceroptres, reared from a variety of North American oak galls. We find that most species were reared from galls induced by just one gall wasp species, and no parasite species was reared from galls of more than four species. Most kleptoparasite divergence events correlate with shifts to non-ancestral galls. These shifts often involved changes in tree habitat, gall location, and gall morphology. Host shifts are thus implicated in driving diversification for both oak gall wasps and their kleptoparasitic associates.more » « less
An official website of the United States government

