skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep learning with photonic neural cellular automata
Abstract Rapid advancements in deep learning over the past decade have fueled an insatiable demand for efficient and scalable hardware. Photonics offers a promising solution by leveraging the unique properties of light. However, conventional neural network architectures, which typically require dense programmable connections, pose several practical challenges for photonic realizations. To overcome these limitations, we propose and experimentally demonstrate Photonic Neural Cellular Automata (PNCA) for photonic deep learning with sparse connectivity. PNCA harnesses the speed and interconnectivity of photonics, as well as the self-organizing nature of cellular automata through local interactions to achieve robust, reliable, and efficient processing. We utilize linear light interference and parametric nonlinear optics for all-optical computations in a time-multiplexed photonic network to experimentally perform self-organized image classification. We demonstrate binary (two-class) classification of images using as few as 3 programmable photonic parameters, achieving high experimental accuracy with the ability to also recognize out-of-distribution data. The proposed PNCA approach can be adapted to a wide range of existing photonic hardware and provides a compelling alternative to conventional photonic neural networks by maximizing the advantages of light-based computing whilst mitigating their practical challenges. Our results showcase the potential of PNCA in advancing photonic deep learning and highlights a path for next-generation photonic computers.  more » « less
Award ID(s):
1918549
PAR ID:
10547826
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Light: Science & Applications
Volume:
13
Issue:
1
ISSN:
2047-7538
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neural networks based on Cellular Automata (CA) have recently yielded more robust, reliable, and parameter-efficient machine learning models. We experimentally demonstrate the first photonic implementation of CA which successfully performs image classification on the Fashion-MNIST dataset. 
    more » « less
  2. Abstract Cellular automata are a class of computational models based on simple rules and algorithms that can simulate a wide range of complex phenomena. However, when using conventional computers, these ‘simple’ rules are only encapsulated at the level of software. This can be taken one step further by simplifying the underlying physical hardware. Here, we propose and implement a simple photonic hardware platform for simulating complex phenomena based on cellular automata. Using this special-purpose computer, we experimentally demonstrate complex phenomena, including fractals, chaos, and solitons, which are typically associated with much more complex physical systems. The flexibility and programmability of our photonic computer present new opportunities to simulate and harness complexity for efficient, robust, and decentralized information processing using light. 
    more » « less
  3. Abstract Radio-frequency interference is a growing concern as wireless technology advances, with potentially life-threatening consequences like interference between radar altimeters and 5 G cellular networks. Mobile transceivers mix signals with varying ratios over time, posing challenges for conventional digital signal processing (DSP) due to its high latency. These challenges will worsen as future wireless technologies adopt higher carrier frequencies and data rates. However, conventional DSPs, already on the brink of their clock frequency limit, are expected to offer only marginal speed advancements. This paper introduces a photonic processor to address dynamic interference through blind source separation (BSS). Our system-on-chip processor employs a fully integrated photonic signal pathway in the analogue domain, enabling rapid demixing of received mixtures and recovering the signal-of-interest in under 15 picoseconds. This reduction in latency surpasses electronic counterparts by more than three orders of magnitude. To complement the photonic processor, electronic peripherals based on field-programmable gate array (FPGA) assess the effectiveness of demixing and continuously update demixing weights at a rate of up to 305 Hz. This compact setup features precise dithering weight control, impedance-controlled circuit board and optical fibre packaging, suitable for handheld and mobile scenarios. We experimentally demonstrate the processor’s ability to suppress transmission errors and maintain signal-to-noise ratios in two scenarios, radar altimeters and mobile communications. This work pioneers the real-time adaptability of integrated silicon photonics, enabling online learning and weight adjustments, and showcasing practical operational applications for photonic processing. 
    more » « less
  4. Abstract As computing resource demands continue to escalate in the face of big data, cloud-connectivity and the internet of things, it has become imperative to develop new low-power, scalable architectures. Neuromorphic photonics, or photonic neural networks, have become a feasible solution for the physical implementation of efficient algorithms directly on-chip. This application is primarily due to the linear nature of light and the scalability of silicon photonics, specifically leveraging the wide-scale complementary metal-oxide-semiconductor manufacturing infrastructure used to fabricate microelectronics chips. Current neuromorphic photonic implementations stem from two paradigms: wavelength coherent and incoherent. Here, we introduce a novel architecture that supports coherentandincoherent operation to increase the capability and capacity of photonic neural networks with a dramatic reduction in footprint compared to previous demonstrations. As a proof-of-principle, we experimentally demonstrate simple addition and subtraction operations on a foundry-fabricated silicon photonic chip. Additionally, we experimentally validate an on-chip network to predict the logical 2 bit gates AND, OR, and XOR to accuracies of 96.8%, 99%, and 98.5%, respectively. This architecture is compatible with highly wavelength parallel sources, enabling massively scalable photonic neural networks. 
    more » « less
  5. null (Ed.)
    Deep learning has led to unprecedented successes in solving some very difficult problems in domains such as computer vision, natural language processing, and general pattern recognition. These achievements are the culmination of decades-long research into better training techniques and deeper neural network models, as well as improvements in hardware platforms that are used to train and execute the deep neural network models. Many application-specific integrated circuit (ASIC) hardware accelerators for deep learning have garnered interest in recent years due to their improved performance and energy-efficiency over conventional CPU and GPU architectures. However, these accelerators are constrained by fundamental bottlenecks due to (1) the slowdown in CMOS scaling, which has limited computational and performance-per-watt capabilities of emerging electronic processors; and (2) the use of metallic interconnects for data movement, which do not scale well and are a major cause of bandwidth, latency, and energy inefficiencies in almost every contemporary processor. Silicon photonics has emerged as a promising CMOS-compatible alternative to realize a new generation of deep learning accelerators that can use light for both communication and computation. This article surveys the landscape of silicon photonics to accelerate deep learning, with a coverage of developments across design abstractions in a bottom-up manner, to convey both the capabilities and limitations of the silicon photonics paradigm in the context of deep learning acceleration. 
    more » « less