Optical frequency comb is an enabling technology for a multitude of applications from metrology to ranging and communications. The tremendous progress in sources of optical frequency combs has mostly been centered around the near-infrared spectral region, while many applications demand sources in the visible and mid-infrared, which have so far been challenging to achieve, especially in nanophotonics. Here, we report widely tunable frequency comb generation using optical parametric oscillators in lithium niobate nanophotonics. We demonstrate sub-picosecond frequency combs tunable beyond an octave extending from 1.5 up to 3.3 μm with femtojoule-level thresholds on a single chip. We utilize the up-conversion of the infrared combs to generate visible frequency combs reaching 620 nm on the same chip. The ultra-broadband tunability and visible-to-mid-infrared spectral coverage of our source highlight a practical and universal path for the realization of efficient frequency comb sources in nanophotonics, overcoming their spectral sparsity.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Cellular automata are a class of computational models based on simple rules and algorithms that can simulate a wide range of complex phenomena. However, when using conventional computers, these ‘simple’ rules are only encapsulated at the level of software. This can be taken one step further by simplifying the underlying physical hardware. Here, we propose and implement a simple photonic hardware platform for simulating complex phenomena based on cellular automata. Using this special-purpose computer, we experimentally demonstrate complex phenomena, including fractals, chaos, and solitons, which are typically associated with much more complex physical systems. The flexibility and programmability of our photonic computer present new opportunities to simulate and harness complexity for efficient, robust, and decentralized information processing using light.
-
Abstract Deep generative learning cannot only be used for generating new data with statistical characteristics derived from input data but also for anomaly detection, by separating nominal and anomalous instances based on their reconstruction quality. In this paper, we explore the performance of three unsupervised deep generative models—variational autoencoders (VAEs) with Gaussian, Bernoulli, and Boltzmann priors—in detecting anomalies in multivariate time series of commercial-flight operations. We created two VAE models with discrete latent variables (DVAEs), one with a factorized Bernoulli prior and one with a restricted Boltzmann machine (RBM) with novel positive-phase architecture as prior, because of the demand for discrete-variable models in machine-learning applications and because the integration of quantum devices based on two-level quantum systems requires such models. To the best of our knowledge, our work is the first that applies DVAE models to anomaly-detection tasks in the aerospace field. The DVAE with RBM prior, using a relatively simple—and classically or quantum-mechanically enhanceable—sampling technique for the evolution of the RBM’s negative phase, performed better in detecting anomalies than the Bernoulli DVAE and on par with the Gaussian model, which has a continuous latent space. The transfer of a model to an unseen dataset with the same anomaly but without re-tuning of hyperparameters or re-training noticeably impaired anomaly-detection performance, but performance could be improved by post-training on the new dataset. The RBM model was robust to change of anomaly type and phase of flight during which the anomaly occurred. Our studies demonstrate the competitiveness of a discrete deep generative model with its Gaussian counterpart on anomaly-detection problems. Moreover, the DVAE model with RBM prior can be easily integrated with quantum sampling by outsourcing its generative process to measurements of quantum states obtained from a quantum annealer or gate-model device.
-
Abstract Topology is central to phenomena that arise in a variety of fields, ranging from quantum field theory to quantum information science to condensed matter physics. Recently, the study of topology has been extended to open systems, leading to a plethora of intriguing effects such as topological lasing, exceptional surfaces, as well as non-Hermitian bulk-boundary correspondence. Here, we show that Bloch eigenstates associated with lattices with dissipatively coupled elements exhibit geometric properties that cannot be described via scalar Berry phases, in sharp contrast to conservative Hamiltonians with non-degenerate energy levels. This unusual behavior can be attributed to the significant population exchanges among the corresponding dissipation bands of such lattices. Using a one-dimensional example, we show both theoretically and experimentally that such population exchanges can manifest themselves via matrix-valued operators in the corresponding Bloch dynamics. In two-dimensional lattices, such matrix-valued operators can form non-commuting pairs and lead to non-Abelian dynamics, as confirmed by our numerical simulations. Our results point to new ways in which the combined effect of topology and engineered dissipation can lead to non-Abelian topological phenomena.
-
Abstract Second-order nonlinear optical processes convert light from one wavelength to another and generate quantum entanglement. Creating chip-scale devices to efficiently control these interactions greatly increases the reach of photonics. Existing silicon-based photonic circuits utilize the third-order optical nonlinearity, but an analogous integrated platform for second-order nonlinear optics remains an outstanding challenge. Here we demonstrate efficient frequency doubling and parametric oscillation with a threshold of tens of micro-watts in an integrated thin-film lithium niobate photonic circuit. We achieve degenerate and non-degenerate operation of the parametric oscillator at room temperature and tune its emission over one terahertz by varying the pump frequency by hundreds of megahertz. Finally, we observe cascaded second-order processes that result in parametric oscillation. These resonant second-order nonlinear circuits will form a crucial part of the emerging nonlinear and quantum photonics platforms.
-
Abstract This article reviews recent progress in quasi-phasematched
nonlinear nanophotonics, with a particular focus on dispersion-engineered nonlinear interactions. Throughout this article, we establish design rules for the bandwidth and interaction lengths of various nonlinear processes, and provide examples for how these processes can be engineered in nanophotonic devices. In particular, we apply these rules towards the design of sources of non-classical light and show that dispersion-engineered devices can outperform their conventional counterparts. Examples include ultra-broadband optical parametric amplification as a resource for measurement-based quantum computation, dispersion-engineered spontaneous parametric downconversion as a source of separable biphotons, and synchronously pumped nonlinear resonators as a potential route towards single-photon nonlinearities. -
Abstract Driven nonlinear resonators provide a fertile ground for phenomena related to phase transitions far from equilibrium, which can open opportunities unattainable in their linear counterparts. Here, we show that optical parametric oscillators (OPOs) can undergo second-order phase transitions in the spectral domain between degenerate and non-degenerate regimes. This abrupt change in the spectral response follows a square-root dependence around the critical point, exhibiting high sensitivity to parameter variation akin to systems around an exceptional point. We experimentally demonstrate such a phase transition in a quadratic OPO. We show that the divergent susceptibility of the critical point is accompanied by spontaneous symmetry breaking and distinct phase noise properties in the two regimes, indicating the importance of a beyond nonlinear bifurcation interpretation. We also predict the occurrence of first-order spectral phase transitions in coupled OPOs. Our results on non-equilibrium spectral behaviors can be utilized for enhanced sensing, advanced computing, and quantum information processing.
-
Over the last few decades, nonlinear optics has become significantly more nonlinear, traversing nearly a billionfold improvement in energy efficiency, with ultrafast nonlinear nanophotonics in particular emerging as a frontier for combining both spatial and temporal engineering. At present, cutting-edge experiments in nonlinear nanophotonics place us just above the
mesoscopic regime, where a few hundred photons suffice to trigger highly nonlinear dynamics. In contrast to classical or deep-quantum optics, the mesoscale is characterized by dynamical interactions between mean-field, Gaussian, and non-Gaussian quantum features, all within a close hierarchy of scales. When combined with the inherent multimode complexity of optical fields, such hybrid quantum-classical dynamics present theoretical, experimental, and engineering challenges to the contemporary framework of quantum optics. In this review, we highlight the unique physics that emerges in multimode nonlinear optics at the mesoscale and outline key principles for exploiting both classical and quantum features to engineer novel functionalities. We briefly survey the experimental landscape and draw attention to outstanding technical challenges in materials, dispersion engineering, and device design for accessing mesoscopic operation. Finally, we speculate on how these capabilities might usher in some new paradigms in quantum photonics, from quantum-augmented information processing to nonclassical-light-driven dynamics and phenomena to all-optical non-Gaussian measurement and sensing. The physics unlocked at the mesoscale present significant challenges and opportunities in theory and experiment alike, and this review is intended to serve as a guide to navigating this new frontier in ultrafast quantum nonlinear optics. -
Photonic integrated circuits with second-order (
χ (2)) nonlinearities are rapidly scaling to remarkably low powers. At this time, state-of-the-art devices achieve saturated nonlinear interactions with thousands of photons when driven by continuous-wave lasers, and further reductions in these energy requirements enabled by the use of ultrafast pulses may soon push nonlinear optics into the realm of single-photon nonlinearities. This tutorial reviews these recent developments in ultrafast nonlinear photonics, discusses design strategies for realizing few-photon nonlinear interactions, and presents a unified treatment of ultrafast quantum nonlinear optics using a framework that smoothly interpolates from classical behaviors to the few-photon scale. These emerging platforms for quantum optics fundamentally differ from typical realizations in cavity quantum electrodynamics due to the large number of coupled optical modes. Classically, multimode behaviors have been well studied in nonlinear optics, with famous examples including soliton formation and supercontinuum generation. In contrast, multimode quantum systems exhibit a far greater variety of behaviors, and yet closed-form solutions are even sparser than their classical counterparts. In developing a framework for ultrafast quantum optics, we identify what behaviors carry over from classical to quantum devices, what intuition must be abandoned, and what new opportunities exist at the intersection of ultrafast and quantum nonlinear optics. Although this article focuses on establishing connections between the classical and quantum behaviors of devices withχ (2)nonlinearities, the frameworks developed here are general and are readily extended to the description of dynamical processes based on third-orderχ (3)nonlinearities.Free, publicly-accessible full text available June 28, 2025 -
Sorger, Volker J. ; Kitayama, Ken-ichi (Ed.)Free, publicly-accessible full text available March 13, 2025