Abstract Two-dimensional (2D) growth-induced 3D shaping enables shape-morphing materials for diverse applications. However, quantitative design of 2D growth for arbitrary 3D shapes remains challenging. Here we show a 2D material programming approach for 3D shaping, which prints hydrogel sheets encoded with spatially controlled in-plane growth (contraction) and transforms them to programmed 3D structures. We design 2D growth for target 3D shapes via conformal flattening. We introduce the concept of cone singularities to increase the accessible space of 3D shapes. For active shape selection, we encode shape-guiding modules in growth that direct shape morphing toward target shapes among isometric configurations. Our flexible 2D printing process enables the formation of multimaterial 3D structures. We demonstrate the ability to create 3D structures with a variety of morphologies, including automobiles, batoid fish, and real human face.
more »
« less
Multifunctionality of two-dimensional sheets actuated by chemical pumps and motors
Abstract Based on computational modeling, the interaction between catalyst-coated surfaces and flexible micro-to-mesoscale two-dimensional (2D) sheets in solution promotes the self-organization of individual sheets into complex three-dimensional (3D) dynamic forms, including intertwined, self-spinning structures, coupled oscillators and motile, shape-shifting layers. These findings can hasten the development of active, reconfigurable interfaces needed for human–machine interactions. Furthermore, one sheet that autonomously reconfigures into multiple 3D shapes is beneficial for manufacturing, reducing the need to fabricate a new structure for each separate application. More generally, because the flexible 2D sheets display greater degrees of freedom than the previously studied hard zero-dimensional and one-dimensional particles, these elastic layers can reveal new, dynamic behavior in chemically active systems. Graphical abstract
more »
« less
- Award ID(s):
- 2234135
- PAR ID:
- 10547838
- Publisher / Repository:
- Cambridge University Press (CUP)
- Date Published:
- Journal Name:
- MRS Bulletin
- Volume:
- 49
- Issue:
- 11
- ISSN:
- 0883-7694
- Format(s):
- Medium: X Size: p. 1145-1154
- Size(s):
- p. 1145-1154
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report on a dendronized bis‐urea macrocycle1self‐assembling via a cooperative mechanism into two‐dimensional (2D) nanosheets formed solely by alternated urea‐urea hydrogen bonding interactions. The pure macrocycle self‐assembles in bulk into one‐dimensional liquid‐crystalline columnar phases. In contrast, its self‐assembly mode drastically changes in CHCl3or tetrachloroethane, leading to 2D hydrogen‐bonded networks. Theoretical calculations, complemented by previously reported crystalline structures, indicate that the 2D assembly is formed by a brick‐like hydrogen bonding pattern between bis‐urea macrocycles. This assembly is promoted by the swelling of the trisdodecyloxyphenyl groups upon solvation, which frustrates, due to steric effects, the formation of the thermodynamically more stable columnar macrocycle stacks. This work proposes a new design strategy to access 2D supramolecular polymers by means of a single non‐covalent interaction motif, which is of great interest for materials development.more » « less
-
Abstract Versatile methods to organize proteins in space are required to enable complex biomaterials, engineered biomolecular scaffolds, cell-free biology, and hybrid nanoscale systems. Here, we demonstrate how the tailored encapsulation of proteins in DNA-based voxels can be combined with programmable assembly that directs these voxels into biologically functional protein arrays with prescribed and ordered two-dimensional (2D) and three-dimensional (3D) organizations. We apply the presented concept to ferritin, an iron storage protein, and its iron-free analog, apoferritin, in order to form single-layers, double-layers, as well as several types of 3D protein lattices. Our study demonstrates that internal voxel design and inter-voxel encoding can be effectively employed to create protein lattices with designed organization, as confirmed by in situ X-ray scattering and cryo-electron microscopy 3D imaging. The assembled protein arrays maintain structural stability and biological activity in environments relevant for protein functionality. The framework design of the arrays then allows small molecules to access the ferritins and their iron cores and convert them into apoferritin arrays through the release of iron ions. The presented study introduces a platform approach for creating bio-active protein-containing ordered nanomaterials with desired 2D and 3D organizations.more » « less
-
null (Ed.)Abstract Origami-based fabrication strategies open the door for developing new manufacturing processes capable of producing complex three-dimensional (3D) geometries from two-dimensional (2D) sheets. Nevertheless, for these methods to translate into scalable manufacturing processes, rapid techniques for creating controlled folds are needed. In this work, we propose a new approach for controlled self-folding of shape memory polymer sheets based on direct laser rastering. We demonstrate that rapidly moving a CO2 laser over pre-strained polystyrene sheets results in creating controlled folds along the laser path. Laser interaction with the polymer induces localized heating above the glass transition temperature with a temperature gradient across the thickness of the thin sheets. This gradient of temperature results in a gradient of shrinkage owing to the viscoelastic relaxation of the polymer, favoring folding toward the hotter side (toward the laser source). We study the influence of laser power, rastering speed, fluence, and the number of passes on the fold angle. Moreover, we investigate process parameters that produce the highest quality folds with minimal undesired deformations. Our results show that we can create clean folds up to and exceeding 90 deg, which highlights the potential of our approach for creating lightweight 3D geometries with smooth surface finishes that are challenging to create using 3D printing methods. Hence, laser-induced self-folding of polymers is an inherently mass-customizable approach to manufacturing, especially when combined with cutting for integration of origami and kirigami.more » « less
-
Abstract A new class of thin flexible structures is introduced that morph from flat into prescribed 3D shapes through strain mismatch between layers of a composite plate. To achieve control over the target shape, two different concepts are coupled. First, motivated by biological growth, strain mismatch is applied between the flat composite layers to transform it into a 3D shape. Depending on the amount of the applied strain mismatch, the transformation involves buckling into one of the available finite number of deformation modes. Second, inspired by kirigami, portions of the material are removed from one of the layers according to a specific pattern. This dramatically increases the number of possible 3D shapes and allows us to attain specific topologies. An experimental apparatus that allows precise control of the strain mismatch is devised. An inverse problem is posed, where starting from a given target shape, the physical parameters that make these shapes possible are determined. To show how the concept works, it focuses on circular composite plates and designs a kirigami pattern that yields a hemispherical structure. The analysis combines a theoretical approach with numerical simulations and physical experiments to understand and predict the shape transition from 2D to 3D. The tools developed here can be extended to attain arbitrary 3D shapes. The initially flat shape suggests that conventional additive manufacturing techniques can be used to functionalize the soft kirigami composite to fabricate, for example, deployable 3D structures, smart skins, and soft electromagnetic metasurfaces.more » « less
An official website of the United States government
