skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The effect of nozzle internal flow on spray atomization
The effect of nozzle surface features on the overall atomization behavior of a liquid jet is analyzed in the present computational work by adopting three representative geometries, namely a single X-ray tomography scan of the Engine Combustion Network’s Spray A nozzle (Unprocessed), a spline reconstruction of multiple scans (Educated), and a purely external flow configuration. The latter configuration is often used in fundamental jet atomization studies. Numerically, the two-phase flow is solved based on algebraic volume-of-fluid methodology utilizing the OpenFoam solver, interFoam. Quantitative characterization of the surface features concerning the first two geometries reveals that while both of them have similar levels of cylindrical asymmetries, the nozzle configuration pertaining to the Unprocessed geometry has much larger surface features along the streamwise direction than the Educated geometry. This produces for the Unprocessed configuration a much larger degree of non-axial velocity components in the flow exiting the orifice and also a more pronounced disturbance of the liquid surface in the first few diameters downstream of the nozzle orifice. Furthermore, this heightened level of surface destabilization generates a much shorter intact liquid core length, that is, it produces faster primary atomization. The surprising aspect of this finding is that the differences between the Unprocessed and Educated geometries are of [Formula: see text](1) μm, and they are able to produce [Formula: see text](1) mm effects in the intact liquid core length. In spite of more pronounced atomization for the Unprocessed geometry, the magnitude of the turbulent liquid kinetic energy is roughly the same as the Educated geometry. This highlights the important role of mean field quantities, in particular, non-axial velocity components, in precipitating primary atomization. At the other end of the spectrum, the external-only configuration has the mildest level of surface disturbances in the near field resulting in the longest intact liquid core length.  more » « less
Award ID(s):
1703825
PAR ID:
10547894
Author(s) / Creator(s):
 ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
International Journal of Engine Research
Volume:
21
Issue:
1
ISSN:
1468-0874
Format(s):
Medium: X Size: p. 55-72
Size(s):
p. 55-72
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce a hardware–software system for rapidly characterizing liquid microjets for x-ray diffraction experiments. An open-source python-based software package allows for programmatic and automated data collection and analysis. We show how jet speed, length, and diameter are influenced by nozzle geometry, gas flow rate, liquid viscosity, and liquid flow rate. We introduce “jet instability” and “jet probability” metrics to help quantify the suitability of a given nozzle for x-ray diffraction experiments. Among our observations were pronounced improvements in jet stability and reliability when using asymmetric needle-tipped nozzles, which allowed for the production of microjects smaller than 250 nm in diameter, traveling faster than 120 m/s. 
    more » « less
  2. null (Ed.)
    We study the enhanced atomization of viscous liquids by employing a novel two-fluid atomizer. The nozzle establishes a countercurrent flow configuration in which the gas and liquid are directed in opposite directions, establishing a two-phase mixing layer. Detailed measurements of droplet size distributions were carried out using laser shadowgraphy, along with high speed flow visualization. The measurements suggest that the liquid emerges as a spray with little further secondary atomization. The performance of this nozzle is compared to the ‘flow-blurring’ nozzle studied by other investigators for four test liquids of viscosity ranging from 1 to 133.5 mPa.s. The counterflow nozzle produces a spray whose characteristics are relatively insensitive to fluid viscosity over the range studied, for gas-liquid mass flow ratios between 0.25 and 1. To gain insight into the mixing process inside the nozzle, simulations are carried out using an Eulerian-Eulerian Volume of Fluid (VoF) approach for representative experimental conditions. The simulation reveals the detailed process of self-sustained flow oscillations and the physical mechanism that generate liquid filaments and final droplets. 
    more » « less
  3. This study investigates the atomization process in Respimat® Soft MistTM Inhalers (SMIs) using a validated Volume of Fluid (VOF)-to-Discrete Phase Model (DPM) to simulate the transition from colliding liquid jets to aerosolized droplets. Key parameters, including colliding jet inlet velocity, surface tension, and liquid viscosity, were systematically varied to analyze their impact on the atomization, i.e., aerosolized droplet size distributions. The VOF-to-DPM simulation results indicate that higher jet inlet velocities enhance ligament fragmentation, producing finer and more uniform droplets while reducing total atomized droplet mass. The relationship between surface tension and atomization performance in colliding jet atomization is not monotonic. Reducing surface tension plays a complex dual role in the atomization process. On the one hand, lower surface tension enhances the likelihood of liquid jet breakup into a liquid sheet, leading to the formation of smaller ligaments under the same airflow conditions and shear forces. This increases the probability of generating more secondary droplets. On the other hand, reduced surface tension also destabilizes the liquid surface shape, decreasing the formation of fine, high-sphericity droplets in regimes where surface tension is a dominant force. Viscosity also influences atomization through complex mechanisms, i.e., lower viscosity reduces resistance to ligament breakup but promotes droplet interactions and coalescence, while higher viscosity suppresses ligament fragmentation, generating larger droplets and reducing atomization efficiency. The validated VOF-to-DPM framework provides critical insights for enhancing the performance and efficiency of inhalation therapies. Future work will incorporate nozzle geometry, jet impingement angles, and surfactant effects to better understand and optimize the atomization process in SMIs, focusing on achieving preferred droplet size distributions and emitted doses for enhanced drug delivery efficiency in human respiratory systems. 
    more » « less
  4. Flow-blurring atomization is an innovative twin-fluid atomization approach that has demonstrated superior effectiveness in producing fine sprays compared to traditional airblast atomization methods. In flow-blurring atomizers, the high-speed gas flow is directed perpendicular to the liquid jet. Under specific geometric and physical conditions, the gas penetrates back into the liquid nozzle, resulting in a highly unsteady bubbly two-phase mixing zone. Despite the remarkable atomization performance of flow-blurring atomizers, the underlying dynamics of the two-phase flows and breakup mechanisms within the liquid nozzle remain poorly understood, primarily due to the challenges in experimental measurements of flow details. In this study, detailed interface-resolved numerical simulations are conducted to investigate the two-phase flows generated by a planar flow-blurring atomizer. By varying key dimensionless parameters, including the dynamic-pressure ratio, density ratio, and Weber number, over wide ranges, we aim to comprehensively characterize their effects on the two-phaseflow regimes and breakup dynamics. 
    more » « less
  5. In the present work, we model and simulate the injection and atomization of a gasoline surrogate jet by detailed numerical simulation. The surrogate fuel has a low volatility and thus no phase change occurs in the process. The nozzle geometry and operation conditions are similar to the Engine Combustion Network (ECN) “Spray G”. We focus the present study on the near field where inter-jet interaction is of secondary importance. Therefore, we have considered only one of the eight jets in the original Spray G injectors. The liquid is injected from the inlet into a chamber with stagnant gas. A tangential component of velocity is introduced at the inlet to mimic the complex internal flow in the original spray G injector, which leads to the jet deflection. A parametric study on the inlet tangential velocity is carried out to identify the proper value to be used. Simulations are performed with the multiphase flow solver, Basilisk, on an adaptive mesh. The gas-liquid interface is captured by the volume-of-fluid method. The numerical results are compared to the X-ray experimental data for the jet deflection angle and the temporal variation of penetration length. The vortex dynamics in the near field are also presented by the assistance of the vortex-identification criterion. 
    more » « less