skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sparsity-aware generalization theory for deep neural networks
Deep artificial neural networks achieve surprising generalization abilities that remain poorly under- stood. In this paper, we present a new approach to analyzing generalization for deep feed-forward ReLU networks that takes advantage of the degree of sparsity that is achieved in the hidden layer activations. By developing a framework that accounts for this reduced effective model size for each input sample, we are able to show fundamental trade-offs between sparsity and generalization. Importantly, our results make no strong assumptions about the degree of sparsity achieved by the model, and it improves over recent norm-based approaches. We illustrate our results numerically, demonstrating non-vacuous bounds when coupled with data-dependent priors in specific settings, even in over-parametrized models.  more » « less
Award ID(s):
2007649
PAR ID:
10548035
Author(s) / Creator(s):
;
Publisher / Repository:
Proceedings of Machine Learning Research
Date Published:
Format(s):
Medium: X
Location:
36th Annual Conference on Learning Theory
Sponsoring Org:
National Science Foundation
More Like this
  1. This work studies the adversarial robustness of parametric functions composed of a linear predic-tor and a nonlinear representation map. Our analysis relies on sparse local Lipschitzness (SLL),an extension of local Lipschitz continuity that better captures the stability and reduced effectivedimensionality of predictors upon local perturbations. SLL functions preserve a certain degree ofstructure, given by the sparsity pattern in the representation map, and include several popular hy-pothesis classes, such as piecewise linear models, Lasso and its variants, and deep feedforward ReLUnetworks. Compared with traditional Lipschitz analysis, we provide a tighter robustness certificateon the minimal energy of an adversarial example, as well as tighter data-dependent nonuniformbounds on the robust generalization error of these predictors. We instantiate these results for the case of deep neural networks and provide numerical evidence that supports our results, shedding new insights into natural regularization strategies to increase the robustness of these models. 
    more » « less
  2. In this paper, we investigate the Rademacher complexity of deep sparse neural networks, where each neuron receives a small number of inputs. We prove generalization bounds for multilayered sparse ReLU neural networks, including convolutional neural networks. These bounds differ from previous ones, as they consider the norms of the convolutional filters instead of the norms of the associated Toeplitz matrices, independently of weight sharing between neurons. As we show theoretically, these bounds may be orders of magnitude better than standard norm-based generalization bounds and empirically, they are almost non-vacuous in estimating generalization in various simple classification problems. Taken together, these results suggest that compositional sparsity of the underlying target function is critical to the success of deep neural networks. 
    more » « less
  3. Learning operators between infinitely dimensional spaces is an important learning task arising in machine learning, imaging science, mathematical modeling and simulations, etc. This paper studies the nonparametric estimation of Lipschitz operators using deep neural networks. Non-asymptotic upper bounds are derived for the generalization error of the empirical risk minimizer over a properly chosen network class. Under the assumption that the target operator exhibits a low dimensional structure, our error bounds decay as the training sample size increases, with an attractive fast rate depending on the intrinsic dimension in our estimation. Our assumptions cover most scenarios in real applications and our results give rise to fast rates by exploiting low dimensional structures of data in operator estimation. We also investigate the influence of network structures (e.g., network width, depth, and sparsity) on the generalization error of the neural network estimator and propose a general suggestion on the choice of network structures to maximize the learning efficiency quantitatively. 
    more » « less
  4. Raginsky, Maxim (Ed.)
    Learning operators between infinitely dimensional spaces is an important learning task arising in machine learning, imaging science, mathematical modeling and simulations, etc. This paper studies the nonparametric estimation of Lipschitz operators using deep neural networks. Non-asymptotic upper bounds are derived for the generalization error of the empirical risk minimizer over a properly chosen network class. Under the assumption that the target operator exhibits a low dimensional structure, our error bounds decay as the training sample size increases, with an attractive fast rate depending on the intrinsic dimension in our estimation. Our assumptions cover most scenarios in real applications and our results give rise to fast rates by exploiting low dimensional structures of data in operator estimation. We also investigate the influence of network structures (e.g., network width, depth, and sparsity) on the generalization error of the neural network estimator and propose a general suggestion on the choice of network structures to maximize the learning efficiency quantitatively. 
    more » « less
  5. While previous optimization results have suggested that deep neural networks tend to favour low-rank weight matrices, the implications of this inductive bias on generalization bounds remain underexplored. In this paper, we apply a chain rule for Gaussian complexity (Maurer, 2016a) to analyze how low-rank layers in deep networks can prevent the accumulation of rank and dimensionality factors that typically multiply across layers. This approach yields generalization bounds for rank and spectral norm constrained networks. We compare our results to prior generalization bounds for deep networks, highlighting how deep networks with low-rank layers can achieve better generalization than those with full-rank layers. Additionally, we discuss how this framework provides new perspectives on the generalization capabilities of deep networks exhibiting neural collapse. Keywords: Gaussian complexity, Generalization bounds, Neural collapse, Low rank layers 
    more » « less