skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on August 28, 2025

Title: Characterization of Human Trust in Robot through Multimodal Physical and Physiological Biometrics in Human-Robot Partnerships
Award ID(s):
2104742
PAR ID:
10548170
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Speakers build rapport in the process of aligning conversational behaviors with each other. Rapport engendered with a teachable agent while instructing domain material has been shown to promote learning. Past work on lexical alignment in the field of education suffers from limitations in both the measures used to quantify alignment and the types of interactions in which alignment with agents has been studied. In this paper, we apply alignment measures based on a data-driven notion of shared expressions (possibly composed of multiple words) and compare alignment in one-on-one human-robot (H-R) interactions with the H-R portions of collaborative human-human-robot (H-H-R) interactions. We find that students in the H-R setting align with a teachable robot more than in the H-H-R setting and that the relationship between lexical alignment and rapport is more complex than what is predicted by previous theoretical and empirical work. 
    more » « less
  2. null (Ed.)
    Abstract To enable safe and effective human–robot collaboration (HRC) in smart manufacturing, seamless integration of sensing, cognition, and prediction into the robot controller is critical for real-time awareness, response, and communication inside a heterogeneous environment (robots, humans, and equipment). The specific research objective is to provide the robot Proactive Adaptive Collaboration Intelligence (PACI) and switching logic within its control architecture in order to give the robot the ability to optimally and dynamically adapt its motions, given a priori knowledge and predefined execution plans for its assigned tasks. The challenge lies in augmenting the robot’s decision-making process to have greater situation awareness and to yield smart robot behaviors/reactions when subject to different levels of human–robot interaction, while maintaining safety and production efficiency. Robot reactive behaviors were achieved via cost function-based switching logic activating the best suited high-level controller. The PACI’s underlying segmentation and switching logic framework is demonstrated to yield a high degree of modularity and flexibility. The performance of the developed control structure subjected to different levels of human–robot interactions was validated in a simulated environment. Open-loop commands were sent to the physical e.DO robot to demonstrate how the proposed framework would behave in a real application. 
    more » « less
  3. null (Ed.)
    To enable safe and effective human-robot collaboration (HRC) in smart manufacturing, seamless integration of sensing, cognition and prediction into the robot controller is critical for real-time awareness, response and communication inside a heterogeneous environment (robots, humans, equipment). The specific research objective is to provide the robot Proactive Adaptive Collaboration Intelligence (PACI) and switching logic within its control architecture in order to give the robot the ability to optimally and dynamically adapt its motions, given a priori knowledge and predefined execution plans for its assigned tasks. The challenge lies in augmenting the robot’s decision-making process to have greater situation awareness and to yield smart robot behaviors/reactions when subject to different levels of human-robot interaction, while maintaining safety and production efficiency. Robot reactive behaviors were achieved via cost function-based switching logic activating the best suited high-level controller. The PACI’s underlying segmentation and switching logic framework is demonstrated to yield a high degree of modularity and flexibility. The performance of the developed control structure subjected to different levels of human-robot interactions was validated in a simulated environment. Open-loop commands were sent to the physical e.DO robot to demonstrate how the proposed framework would behave in a real application. 
    more » « less
  4. Human-robot teaming is becoming increasingly common within manufacturing processes. A key aspect practitioners need to decide on when developing effective processes is the level of task interdependence between human and robot team members. Task interdependence refers to the extent to which one’s behavior affects the performance of others in a team. In this work, we examine the effects of three levels of task interdependence—pooled, sequential, reciprocalin human-robot teaming on human worker’s mental states, task performance, and perceptions of the robot. Participants worked with the robot in an assembly task while their heart rate variability was being recorded. Results suggested human workers in the reciprocal interdependence level experienced less stress and perceived the robot more as a collaborator than other two levels. Task interdependence did not affect perceived safety. Our findings highlight the importance of considering task structure in human-robot teaming and inform future research on and industry practices for human-robot task allocation. 
    more » « less