Summary Microbial nitrogen (N) fixation accounts forc. 97% of natural N inputs to terrestrial ecosystems. These microbes can be free‐living in the soil and leaf litter (asymbiotic) or in symbiosis with plants. Warming is expected to increase N‐fixation rates because warmer temperatures favor the growth and activity of N‐fixing microbes.We investigated the effects of warming on asymbiotic components of N fixation at a field warming experiment in Puerto Rico. We analyzed the function and composition of bacterial communities from surface soil and leaf litter samples.Warming significantly increased asymbiotic N‐fixation rates in soil by 55% (to 0.002 kg ha−1 yr−1) and by 525% in leaf litter (to 14.518 kg ha−1 yr−1). This increase in N fixation was associated with changes in the N‐fixing bacterial community composition and soil nutrients.Our findings suggest that warming increases the natural N inputs from the atmosphere into this tropical forest due to changes in microbial function and composition, especially in the leaf litter. Given the importance of leaf litter in nutrient cycling, future research should investigate other aspects of N cycles in the leaf litter under warming conditions.
more »
« less
Investigating eco-evolutionary processes of microbial community assembly in the wild using a model leaf litter system
Abstract Microbial communities are not the easiest to manipulate experimentally in natural ecosystems. However, leaf litter—topmost layer of surface soil—is uniquely suitable to investigate the complexities of community assembly. Here, we reflect on over a decade of collaborative work to address this topic using leaf litter as a model system in Southern California ecosystems. By leveraging a number of methodological advantages of the system, we have worked to demonstrate how four processes—selection, dispersal, drift, and diversification—contribute to bacterial and fungal community assembly and ultimately impact community functioning. Although many dimensions remain to be investigated, our initial results demonstrate that both ecological and evolutionary processes occur simultaneously to influence microbial community assembly. We propose that the development of additional and experimentally tractable microbial systems will be enormously valuable to test the role of eco-evolutionary processes in natural settings and their implications in the face of rapid global change.
more »
« less
- Award ID(s):
- 2113004
- PAR ID:
- 10548252
- Publisher / Repository:
- Oxford Academic
- Date Published:
- Journal Name:
- The ISME Journal
- Volume:
- 18
- Issue:
- 1
- ISSN:
- 1751-7362
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Litter decomposition is an important ecosystem process and global carbon flux that has been shown to be controlled by climate, litter quality, and microbial communities. Process‐based ecosystem models are used to predict responses of litter decomposition to climate change. While these models represent climate and litter quality effects on litter decomposition, they have yet to integrate empirical microbial community data into their parameterizations for predicting litter decomposition. To fill this gap, our research used a comprehensive leaf litterbag decomposition experiment at 10 temperate forest U.S. National Ecological Observatory Network (NEON) sites to calibrate (7 sites) and validate (3 sites) the MIcrobial‐MIneral Carbon Stabilization (MIMICS) model. MIMICS was calibrated to empirical decomposition rates and to their empirical drivers, including the microbial community (represented as the copiotroph‐to‐oligotroph ratio). We calibrate to empirical drivers, rather than solely rates or pool sizes, to improve the underlying drivers of modeled leaf litter decomposition. We then validated the calibrated model and evaluated the effects of calibration under climate change using the SSP 3–7.0 climate change scenario. We find that incorporating empirical drivers of litter decomposition provides similar, and sometimes better (in terms of goodness‐of‐fit metrics), predictions of leaf litter decomposition but with different underlying ecological dynamics. For some sites, calibration also increased climate change‐induced leaf litter mass loss by up to 5%, with implications for carbon cycle‐climate feedbacks. Our work also provides an example for integrating data on the relative abundance of bacterial functional groups into an ecosystem model using a novel calibration method to bridge empiricism and process‐based modeling, answering a call for the use of empirical microbial community data in process‐based ecosystem models. We highlight that incorporating mechanistic information into models, as done in this study, is important for improving confidence in model projections of ecological processes like litter decomposition under climate change.more » « less
-
ABSTRACT Much of life on Earth is at the mercy of currents and flow. Residence time (τ) estimates how long organisms and resources stay within a system based on the ratio of volume (V) to flow rate (Q). Short residence times promote immigration but may prevent the establishment of species that cannot quickly reproduce, or resist being washed out. In contrast, long residence times reduce resource input, selecting for species that can survive on a low supply of energy and nutrients. Theory suggests that these opposing forces shape the abundance, diversity, and function of flowing systems. In this study, we subjected chemostats inoculated with a complex lake microbial community to a residence time gradient spanning seven orders of magnitude. Microbial abundance, richness, and evenness increased with residence time, while functions like productivity and resource consumption decreased along the gradient. Microbial taxa were non- randomly distributed, forming distinct clusters of short-τ and long-τ specialists, reflecting a pattern of niche partitioning. Consistent with theoretical predictions, we demonstrate that residence time shapes assembly processes with direct implications for biodiversity and community function. These insights are crucial for understanding and managing flowing environments, such as animal gut microbiomes, soil litter invertebrate communities, and plankton in freshwater and marine ecosystems.more » « less
-
Abstract Decomposition is the transformation of dead organic matter into its inorganic constituents. In most biomes, decomposition rates can be accurately predicted with simple mathematical models, but these models have long under‐predicted decomposition in globally extensive drylands.We posit that the exposed surface conditions characteristic of drylands make litter decomposition uniquely subject to microsite‐specific environmental controls and spatially variable microbial communities. As such, decomposition in dryland ecosystems—which are characterized by extremes in temporal heterogeneity of climate conditions and spatial heterogeneity of vegetation cover with corresponding microclimate variability—is a prime example of a macrosystems process that can be addressed by merging field data with new predictive process models operating across a hierarchical continuum of spatial scales and process resolutions.A macrosystems approach offers promise to reconcile model‐measurement discrepancies by integrating observations and experiments across multiple scales, from microsites (e.g. shrub sub‐canopy or intercanopy) to regions (e.g. across a 100s of km2study site with complex topography, precipitation and temperature) and ultimately to a continental perspective (e.g. North American drylands).Recent developments in technology and data availability position the scientific community to integrate laboratory, field, modelling and remote sensing approaches across a hierarchical range of scales to capture the spatiotemporal distribution of litter and environmental conditions needed to predict decay dynamics at the micro‐to‐macroscale. This multi‐scale approach promises a path forward to resolving a longstanding disconnect between measured data and modelled processes in dryland litter decomposition.Dryland litter decomposition presents an excellent case study for resolving spatially and temporally complex biogeochemical dynamics through a hierarchical, multidisciplinary macrosystems approach.We focus on dryland litter decomposition, but the hierarchical, multidisciplinary macrosystems approach we outline shows great potential for resolving other spatially and temporally complex biogeochemical processes across a wide range of ecosystems. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Summary Pine‐fungal co‐invasions into native ecosystems are increasingly prevalent across the southern hemisphere. In Australia, invasive pines slowly spread into native eucalypt forests, creating novel mixed forests. We sought to understand how pine‐fungal co‐invasions impact interconnected above‐ and belowground ecosystem characteristics.We sampled beneath maturePinus radiataandEucalyptus racemosain a pine‐invaded eucalypt forest in New South Wales, Australia. We measured microbial community composition via amplicon sequencing of 16S, ITS2, and 18S rDNA regions, microbial metabolic activity via Biolog plate substrate utilization, and soil, leaf litter, and understory plant characteristics.Pines were associated with decreased topsoil moisture, increased pine litter, and decreased eucalypt litter total phosphorus content. Soils and roots beneath pines had distinct microbial community composition and activity relative to eucalypts, including decreased bacterial diversity, decreased microbial utilization of several C‐ and N‐rich substrates, and enrichment of pine‐associated ectomycorrhizae. Introduced suilloid fungi were abundant across both pine and eucalypt soils and roots. Many ecosystem impacts increased with pine size.Invasive pines and their ectomycorrhizae have significant impacts on eucalypt forest properties as they grow. Interconnected impacts at the scale of individual trees should be considered when managing invaded forests and predicting effects of pine invasions.more » « less
An official website of the United States government

