skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measuring Dwarf Galaxy Intrinsic Abundance Scatter with Mid-resolution Spectroscopic Surveys: Calibrating APOGEE Abundance Errors
Abstract The first generations of stars left their chemical fingerprints on metal-poor stars in the Milky Way and its surrounding dwarf galaxies. While instantaneous and homogeneous enrichment implies that groups of conatal stars should have the same element abundances, small amplitudes of abundance scatter are seen at fixed [Fe/H]. Measurements of intrinsic abundance scatter have been made with small high-resolution spectroscopic data sets where measurement uncertainty is small compared to this scatter. In this work, we present a method to use mid-resolution survey data, which have larger errors, to make this measurement. Using APOGEE Data Release 17, we calculate the intrinsic scatter of Al, O, Mg, Si, Ti, Ni, and Mn relative to Fe for 333 metal-poor stars across six classical dwarf galaxies around the Milky Way, and 1604 stars across 19 globular clusters (GCs). We calibrate the reported abundance errors in bins of signal-to-noise ratio and [Fe/H] using a high-fidelity halo data set. Applying these calibrated errors to the APOGEE data, we find small amplitudes of average intrinsic abundance scatter in dwarf galaxies ranging from 0.03 to 0.09 dex, with a median value of 0.047 dex. For the GCs, we find intrinsic scatters ranging from 0.01 to 0.11 dex, with particularly high scatter for Al and O. Our measurements of intrinsic abundance scatter place important upper bounds, which are limited by our calibration, on the intrinsic scatter in these systems, as well as constraints on their underlying star formation history and mixing that we can look to simulations to interpret.  more » « less
Award ID(s):
2307950 1815461 2202135
PAR ID:
10548274
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
974
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 186
Size(s):
Article No. 186
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey has obtained high-resolution spectra for thousands of red giant stars distributed among the massive satellite galaxies of the Milky Way (MW): the Large and Small Magellanic Clouds (LMC/SMC), the Sagittarius Dwarf Galaxy (Sgr), Fornax (Fnx), and the now fully disrupted Gaia Sausage/Enceladus (GSE) system. We present and analyze the APOGEE chemical abundance patterns of each galaxy to draw robust conclusions about their star formation histories, by quantifying the relative abundance trends of multiple elements (C, N, O, Mg, Al, Si, Ca, Fe, Ni, and Ce), as well as by fitting chemical evolution models to the [ α /Fe]–[Fe/H] abundance plane for each galaxy. Results show that the chemical signatures of the starburst in the Magellanic Clouds (MCs) observed by Nidever et al. in the α -element abundances extend to C+N, Al, and Ni, with the major burst in the SMC occurring some 3–4 Gyr before the burst in the LMC. We find that Sgr and Fnx also exhibit chemical abundance patterns suggestive of secondary star formation epochs, but these events were weaker and earlier (∼5–7 Gyr ago) than those observed in the MCs. There is no chemical evidence of a second starburst in GSE, but this galaxy shows the strongest initial star formation as compared to the other four galaxies. All dwarf galaxies had greater relative contributions of AGB stars to their enrichment than the MW. Comparing and contrasting these chemical patterns highlight the importance of galaxy environment on its chemical evolution. 
    more » « less
  2. ABSTRACT The element abundances of local group galaxies connect enrichment mechanisms to galactic properties and serve to contextualize the Milky Way’s abundance distributions. Individual stellar spectra in nearby galaxies can be extracted from integral field unit (IFU) data, and provide a means to take an abundance census of the local group. We introduce a programme that leverages $R=1800$, $$\mathrm{SNR}=15$$, IFU resolved spectra from the multi unit spectroscopic explorer . We deploy the data-driven modelling approach for labelling stellar spectra with stellar parameters and abundances, of The Cannon, on resolved stars in NGC 6822. We construct our model for The Cannon using $$\approx$$19 000 Milky Way lamost spectra with apogee labels. We report six inferred abundance labels (denoted $$\ell _\mathrm{X}$$), for 192 NGC 6822 disc stars, precise to $$\approx$$0.15 dex. We validate our generated spectral models provide a good fit to the data, including at individual atomic line features. We infer mean abundances of $$\ell _\mathrm{[Fe/H]} = -0.90 \pm 0.03$$, $$\ell _\mathrm{[Mg/Fe]} = -0.01 \pm 0.01$$, $$\ell _\mathrm{[Mn/Fe]} = -0.22 \pm 0.02$$, $$\ell _\mathrm{[Al/Fe]} = -0.33 \pm 0.03$$, $$\ell _\mathrm{[C/Fe]} =-0.43 \pm 0.03$$, $$\ell _\mathrm{[N/Fe]} =0.18 \pm 0.03$$. These abundance labels are similar to those of dwarf galaxies observed by apogee, and the lower enhancements for NGC 6822 compared to the Milky Way are consistent with expectations. This approach supports a new era in extragalactic archaeology of characterizing the local group enrichment diversity using low-resolution, low signal to noise ratio IFU resolved spectra. Furthermore, we conclude that it is feasible to build a model based on spectra observed with one instrument and apply it to spectra obtained with another. 
    more » « less
  3. Abstract Stellar abundance measurements are subject to systematic errors that induce extra scatter and artificial correlations in elemental abundance patterns. We derive empirical calibration offsets to remove systematic trends with surface gravity log ( g ) in 17 elemental abundances of 288,789 evolved stars from the SDSS APOGEE survey. We fit these corrected abundances as the sum of a prompt process tracing core-collapse supernovae and a delayed process tracing Type Ia supernovae, thus recasting each star’s measurements into the amplitudesAccandAIaand the element-by-element residuals from this two-parameter fit. As a first application of this catalog, which is 8× larger than that of previous analyses that used a restricted log ( g ) range, we examine the median residual abundances of 14 open clusters, nine globular clusters, and four dwarf satellite galaxies. Relative to field Milky Way disk stars, the open clusters younger than 2 Gyr show ≈0.1−0.2 dex enhancements of the neutron-capture element Ce, and the two clusters younger than 0.5 Gyr also show elevated levels of C+N, Na, S, and Cu. Globular clusters show elevated median abundances of C+N, Na, Al, and Ce, and correlated abundance residuals that follow previously known trends. The four dwarf satellites show similar residual abundance patterns despite their different star formation histories, with ≈0.2–0.3 dex depletions in C+N, Na, and Al and ≈0.1 dex depletions in Ni, V, Mn, and Co. We provide our catalog of corrected APOGEE abundances, two-process amplitudes, and residual abundances, which will be valuable for future studies of abundance patterns in different stellar populations and of additional enrichment processes that affect galactic chemical evolution. 
    more » « less
  4. Abstract Stellar streams in the Galactic halo are useful probes of the assembly of galaxies like the Milky Way. Many tidal stellar streams that have been found in recent years are accompanied by a known progenitor globular cluster or dwarf galaxy. However, the Orphan–Chenab (OC) stream is one case where a relatively narrow stream of stars has been found without a known progenitor. In an effort to find the parent of the OC stream, we use astrometry from the early third data release of ESA’s Gaia mission (Gaia EDR3) and radial velocity information from the Sloan Digital Sky Survey (SDSS)-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey to find up to 13 stars that are likely members of the OC stream. We use the APOGEE survey to study the chemical nature (for up to 10 stars) of the OC stream in theα(O, Mg, Ca, Si, Ti, and S), odd-Z(Al, K, and V), Fe-peak (Fe, Ni, Mn, Co, and Cr), and neutron-capture (Ce) elemental groups. We find that the stars that make up the OC stream are not consistent with a monometallic population and have a median metallicity of −1.92 dex with a dispersion of 0.28 dex. Our results also indicate that the α elements are depleted compared to the known Milky Way populations and that its [Mg/Al] abundance ratio is not consistent with second-generation stars from globular clusters. The detailed chemical pattern of these stars, namely the [α/Fe]–[Fe/H] plane and the metallicity distribution, indicates that the OC stream progenitor is very likely to be a dwarf spheroidal galaxy with a mass of ∼106M
    more » « less
  5. Abstract We measure abundances of 12 elements (Na, Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni) in a sample of 86 metal-poor (−2 ≲ [Fe/H] ≲ −1) subgiant stars in the solar neighborhood. Abundances are derived from high-resolution spectra taken with the Potsdam Echelle Polarimetric and Spectroscopic Instrument on the Large Binocular Telescope, modeled using iSpec and MOOG. By carefully quantifying the impact of photon-noise (<0.05 dex for all elements), we robustly measure theintrinsicscatter of abundance ratios. At fixed [Fe/H], the rms intrinsic scatter in [X/Fe] ranges from 0.04 (Cr) to 0.16 dex (Na), with a median of 0.08 dex. Scatter in [X/Mg] is similar, and accounting for [α/Fe] only reduces the overall scatter moderately. We consider several possible origins of the intrinsic scatter with particular attention to fluctuations in the relative enrichment by core-collapse supernovae (CCSN) and Type Ia supernovae and stochastic sampling of the CCSN progenitor mass distribution. The stochastic sampling scenario provides a good quantitative explanation of our data if the effective number of CCSN contributing to the enrichment of a typical sample star isN∼ 50. At the median metallicity of our sample, this interpretation implies that the CCSN ejecta are mixed over a gas mass ∼6 × 104Mbefore forming stars. The scatter of elemental abundance ratios is a powerful diagnostic test for simulations of star formation, feedback, and gas mixing in the early phases of the Galaxy. 
    more » « less