Abstract PurposeTo compare T1 and T2 measurements across commercial and prototype 0.55T MRI systems in both phantom and healthy participants using the same vendor‐neutral pulse sequences, reconstruction, and analysis methods. MethodsStandard spin echo measurements and abbreviated protocol measurements of T1, B1, and T2 were made on two prototype 0.55 T systems and two commercial 0.55T systems using an ISMRM/NIST system phantom. Additionally, five healthy participants were imaged at each system using the abbreviated protocol for T1, B1, and T2 measurement. The phantom measurements were compared to NMR‐based reference measurements to determine accuracy, and both phantom and in vivo measurements were compared to assess reproducibility and differences between the prototype and commercial systems. ResultsVendor‐neutral sequences were implemented across all four systems, and the code for pulse sequences and reconstruction is freely available. For participants, there was no difference in the mean T1 and T2 relaxation times between the prototype and commercial systems. In the phantom, there were no significant differences between the prototype and commercial systems for T1 and T2 measurements using the abbreviated protocol. ConclusionQuantitative T1 and T2 measurements at 0.55T in phantom and healthy participants are not statistically different across the prototype and commercial systems.
more »
« less
Improved liver fat and R2* quantification at 0. 55 T using locally low‐rank denoising
Abstract PurposeTo improve liver proton density fat fraction (PDFF) and quantification at 0.55 T by systematically validating the acquisition parameter choices and investigating the performance of locally low‐rank denoising methods. MethodsA Monte Carlo simulation was conducted to design a protocol for PDFF and mapping at 0.55 T. Using this proposed protocol, we investigated the performance of robust locally low‐rank (RLLR) and random matrix theory (RMT) denoising. In a reference phantom, we assessed quantification accuracy (concordance correlation coefficient [] vs. reference values) and precision (using SD) across scan repetitions. We performed in vivo liver scans (11 subjects) and used regions of interest to compare means and SDs of PDFF and measurements. Kruskal–Wallis and Wilcoxon signed‐rank tests were performed (p < 0.05 considered significant). ResultsIn the phantom, RLLR and RMT denoising improved accuracy in PDFF and with >0.992 and improved precision with >67% decrease in SD across 50 scan repetitions versus conventional reconstruction (i.e., no denoising). For in vivo liver scans, the mean PDFF and mean were not significantly different between the three methods (conventional reconstruction; RLLR and RMT denoising). Without denoising, the SDs of PDFF and were 8.80% and 14.17 s−1. RLLR denoising significantly reduced the values to 1.79% and 5.31 s−1(p < 0.001); RMT denoising significantly reduced the values to 2.00% and 4.81 s−1(p < 0.001). ConclusionWe validated an acquisition protocol for improved PDFF and quantification at 0.55 T. Both RLLR and RMT denoising improved the accuracy and precision of PDFF and measurements.
more »
« less
- Award ID(s):
- 1828736
- PAR ID:
- 10548312
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Magnetic Resonance in Medicine
- ISSN:
- 0740-3194
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract PurposeDiffusion encoding gradient waveforms can impartintra‐voxelandinter‐voxeldephasing owing to bulk motion, limiting achievable signal‐to‐noise and complicating multishot acquisitions. In this study, we characterize improvements in phase consistency via gradient moment nulling of diffusion encoding waveforms. MethodsHealthy volunteers received neuro () and cardiac () MRI. Three gradient moment nulling levels were evaluated: compensation for position (), position + velocity (), and position + velocity + acceleration (). Three experiments were completed: (Exp‐1) Fixed Trigger Delay Neuro DWI; (Exp‐2) Mixed Trigger Delay Neuro DWI; and (Exp‐3) Fixed Trigger Delay Cardiac DWI. Significant differences () of the temporal phase SD between repeated acquisitions and the spatial phase gradient across a given image were assessed. Resultsmoment nulling was a reference for all measures. In Exp‐1, temporal phase SD for diffusion encoding was significantly reduced with (35% oft‐tests) and (68% oft‐tests). The spatial phase gradient was reduced in 23% oft‐tests for and 2% of cases for . In Exp‐2, temporal phase SD significantly decreased with gradient moment nulling only for (83% oft‐tests), but spatial phase gradient significantly decreased with only (50% oft‐tests). In Exp‐3, gradient moment nulling significantly reduced temporal phase SD and spatial phase gradients (100% oft‐tests), resulting in less signal attenuation and more accurate ADCs. ConclusionWe characterized gradient moment nulling phase consistency for DWI. UsingM1for neuroimaging andM1 + M2for cardiac imaging minimized temporal phase SDs and spatial phase gradients.more » « less
-
ABSTRACT RationaleCorals are continuous, time‐resolved archives of ambient seawater geochemistry and can extend climate records beyond direct monitoring. The iodine‐to‐calcium (I/Ca) ratio may be a proxy for local oxygen depletion in corals, but the current solution‐based ICP‐MS protocol limits sampling resolution. A protocol was developed for rapid analysis of coral I/Ca using laser ablation ICP‐MS. MethodsTwo reference materials, a powdered coral (JCp‐1) and a synthetic carbonate (MACS‐3), were compared for precision in measuring Sr, Mg, I, Ba, and U. Then, the influence of laser parameters (spot size, fluence, repetition rate, and scan speed) on iodine sensitivity from the reference material was evaluated to optimize laser settings for accurate and reproducible I/Ca calibration. Then, I/Ca was measured in line scans along and across the ambulacrum in aDiploria labyrinthiformiscoral. ResultsWe find that JCp‐1 has greater precision in measuring iodine, as well as other traces, compared to MACS‐3. At a 10 Hz repetition rate, spot sizes from 150 to 85 μm obtained concentrations in agreement with certified values, but higher repetition rates overestimated iodine concentrations from JCp‐1. Certain scan speeds and fluence can introduce noise, likely due to matrix effects, but the signal‐to‐noise ratio can be improved by adjacent‐average filtering. Using this simple data filtering routine and optimized laser settings, the highest resolution for accurate I/Ca analysis is < 100 μm. While the fine‐scale (< 250 μm) I/Ca variabilities in parallel transects in a coral sample likely resulted from biomineralization processes, large ‐scale features (> 500 μm) along the ambulacrum tend to correlate. ConclusionsLA‐ICP‐MS has great potential for accurate, high‐resolution I/Ca profiling in corals using JCp‐1 as a calibration standard. Because of compositional variability near centers of calcification, it is important to pay attention to how the laser transect is aligned relative to skeletal elements, which may incorporate iodine differently.more » « less
-
PurposeTo demonstrate the feasibility of high‐resolution morphologic lung MRI at 0.55 T using a free‐breathing balanced steady‐state free precession half‐radial dual‐echo imaging technique (bSTAR). MethodsSelf‐gated free‐breathing bSTAR (TE1/TE2/TR of 0.13/1.93/2.14 ms) lung imaging in five healthy volunteers and a patient with granulomatous lung disease was performed using a 0.55 T MR‐scanner. A wobbling Archimedean spiral pole (WASP) trajectory was used to ensure a homogenous coverage of k‐space over multiple breathing cycles. WASP uses short‐duration interleaves randomly tilted by a small polar angle and rotated by a golden angle about the polar axis. Data were acquired continuously over 12:50 min. Respiratory‐resolved images were reconstructed off‐line using compressed sensing and retrospective self‐gating. Reconstructions were performed with a nominal resolution of 0.9 mm and a reduced isotropic resolution of 1.75 mm corresponding to shorter simulated scan times of 8:34 and 4:17 min, respectively. Analysis of apparent SNR was performed in all volunteers and reconstruction settings. ResultsThe technique provided artifact‐free morphologic lung images in all subjects. The short TR of bSTAR in conjunction with a field strength of 0.55 T resulted in a complete mitigation of off‐resonance artifacts in the chest. Mean SNR values in healthy lung parenchyma for the 12:50 min scan were 3.6 ± 0.8 and 24.9 ± 6.2 for 0.9 mm and 1.75 mm reconstructions, respectively. ConclusionThis study demonstrates the feasibility of morphologic lung MRI with a submillimeter isotropic spatial resolution in human subjects with bSTAR at 0.55 T.more » « less
-
PurposeTo develop and evaluate a cardiac phase‐resolved myocardial T1mapping sequence. MethodsThe proposed method for temporally resolved parametric assessment of Z‐magnetization recovery (TOPAZ) is based on contiguous fast low‐angle shot imaging readout after magnetization inversion from the pulsed steady state. Thereby, segmented k‐space data are acquired over multiple heartbeats, before reaching steady state. This results in sampling of the inversion‐recovery curve for each heart phase at multiple points separated by an R‐R interval. Joint T1andestimation is performed for reconstruction of cardiac phase‐resolved T1andmaps. Sequence parameters are optimized using numerical simulations. Phantom and in vivo imaging are performed to compare the proposed sequence to a spin‐echo reference and saturation pulse prepared heart rate–independent inversion‐recovery (SAPPHIRE) T1mapping sequence in terms of accuracy and precision. ResultsIn phantom, TOPAZ T1values with integratedcorrection are in good agreement with spin‐echo T1values (normalized root mean square error = 4.2%) and consistent across the cardiac cycle (coefficient of variation = 1.4 ± 0.78%) and different heart rates (coefficient of variation = 1.2 ± 1.9%). In vivo imaging shows no significant difference in TOPAZ T1times between the cardiac phases (analysis of variance:P = 0.14, coefficient of variation = 3.2 ± 0.8%), but underestimation compared with SAPPHIRE (T1time ± precision: 1431 ± 56 ms versus 1569 ± 65 ms). In vivo precision is comparable to SAPPHIRE T1mapping until middiastole (P > 0.07), but deteriorates in the later phases. ConclusionsThe proposed sequence allows cardiac phase‐resolved T1mapping with integratedassessment at a temporal resolution of 40 ms. Magn Reson Med 79:2087–2100, 2018. © 2017 International Society for Magnetic Resonance in Medicine.more » « less
An official website of the United States government
