skip to main content


This content will become publicly available on March 11, 2025

Title: Driving a Ballbot Wheelchair with Hands-Free Torso Control
A novel wheelchair called PURE ( Personalized Unique Rolling Experience) that uses hands hands-free (HF) torso leanlean-to -steer control has been developed for manual wheelchair users (mWCUs). PURE addresses limitations of current wheelchairs, such as the in ability to use both hands for life experiences instead of propulsion. PURE uses a ball ball-based robot drivetrain to offer a compactcompact, selfself- balancing , omnidirectional mobile device. A custom sensor system convertconverts rider torso motions into direction and speed commands to control PURE, which is especially useful if a rider has minimal torso range of motion. We explored whether PURE’s HF control performed as well as a traditional joystick (JS) human human- robot interface and mWCUsmWCUs, performed as well as able able-bodied users (ABUs). 10 mWCUs and 10 ABUs were trained and tested to drive PURE through courses replicating indoor settingssettings. Each participant adjusted ride sensitivity settings for both HF and JS control . Repeated Repeated-measures MANOVA tests suggested that the number of collisions collisions, completion time time, NASA TLX scores except physical demand , and index of performance performances were similar for HF and JS control and between mWCUs and ABUs for all sections. Th is suggestsuggests that PURE is effective for controlling this new omnidirectional wheelchair by only using torso motion thus leaving both hands to be used for other tasks during propulsion propulsion.  more » « less
Award ID(s):
2024905
PAR ID:
10548365
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400703225
Page Range / eLocation ID:
678 to 686
Subject(s) / Keyword(s):
Self-balancing Mobility Device Lean-to-Steer Mobile Robot
Format(s):
Medium: X
Location:
Boulder CO USA
Sponsoring Org:
National Science Foundation
More Like this
  1. A hands-free (HF) lean-to-steer control concept that uses torso motions is demonstrated by navigating a virtual robotic mobility device based on a ball-based robotic (ballbot) wheelchair. A custom sensor system (i.e., Torso-dynamics Estimation System (TES)) was utilized to measure and convert the dynamics of the rider’s torso motions into commands to provide HF control of the robot. A simulation study was conducted to explore the efficacy of the HF controller compared to a traditional joystick (JS) controller, and whether there were differences in performance by manual wheelchair users (mWCUs), who may have reduced torso function, compared to able-bodied users (ABUs). Twenty test subjects (10 mWCUs + 10 ABUs) used the subject-specific adjusted TES while wearing a virtual reality headset and were asked to navigate a virtual human rider on the ballbot through obstacle courses replicating seven indoor environment zones. Repeated measures MANOVA tests assessed performance metrics representing efficiency (i.e., number of collisions), effectiveness (i.e., completion time), comfort (i.e., NASA TLX scores), and robustness (i.e., index of performance). As expected, more challenging zones took longer to complete and resulted in more collisions. An interaction effect was observed such that ABUs had significantly more collisions using JS vs. HF control, while mWCUs had little difference with either interface. All subjects reported greater physical demand was needed for HF control than JS control; although, no users visibly showed or expressed fatigue or exhaustion when using HF control. In general, HF control performed as well as JS control, and mWCUs performed similarly to ABUs. 
    more » « less
  2. We designed and validated two interfaces for physical human-robot interaction that utilize torso motions for hands-free navigation control of riding or remote mobile robots. The Torso-dynamics Estimation System (TES), which consisted of an instrumented seat (Force Sensing Seat, FSS) and a wearable sensor (inertial measurement unit, IMU), was developed to quantify the translational and rotational motions of the torso, respectively. The FSS was constructed from six uniaxial loadcells to output 3D resultant forces and torques, which were used to compute the translational movement of the 2D center of pressure (COP) under the seated user. Two versions of the FSS (Gen 1.0 and 2.0) with different loadcell layouts, materials, and manufacturing methods were developed to showcase the versatility of the FSS design and construction. Both FSS versions utilized low-cost components and a simple calibration protocol to correct for dimensional inaccuracies. The IMU, attached on the user’s upper chest, used a proprietary algorithm to compute the 3D torso angles without relying heavily on magnetometers to minimize errors from electromagnetic noises. A validation study was performed on eight test subjects (six able-bodied users and two manual wheelchair users with reduced torso range of motion) to validate TES estimations by comparing them to data collected on a research-grade force plate and motion capture system. TES readings displayed high accuracy (average RMSE of 3D forces, 3D torques, 2D COP, and torso angles were well less than maximum limits of 5N, 5Nm, 10mm, and 6˚, respectively). 
    more » « less
  3. Motivated by the need to improve the quality of life for the elderly and disabled individuals who rely on wheelchairs for mobility, and who may have limited or no hand functionality at all, we propose an egocentric computer vision based co-robot wheelchair to enhance their mobility without hand usage. The robot is built using a commercially available powered wheelchair modified to be controlled by head motion. Head motion is measured by tracking an egocentric camera mounted on the user’s head and faces outward. Compared with previous approaches to hands-free mobility, our system provides a more natural human robot interface because it enables the user to control the speed and direction of motion in a continuous fashion, as opposed to providing a small number of discrete commands. This article presents three usability studies, which were conducted on 37 subjects. The first two usability studies focus on comparing the proposed control method with existing solutions while the third study was conducted to assess the effectiveness of training subjects to operate the wheelchair over several sessions. A limitation of our studies is that they have been conducted with healthy participants. Our findings, however, pave the way for further studies with subjects with disabilities. 
    more » « less
  4. In this work we present the design of a swimming robot that is inspired by the body shape modulation of small microorganisms. Amoebas are small single celled organisms that locomote through deformation and shape change of their body. To achieve similar shape modulation for swimming propulsion in a robot we developed a novel flexible appendage using tape springs. A tape spring is an elongated strip of metal with a curved cross-section that can act as a stiff structure when loaded against the curvature, while it can easily buckle when loaded with the curvature. We develop a tape spring appendage that is capable of freely deforming its perimeter through two actuation inputs. In the first portion of this paper we develop the kinematics of the appendage mechanisms and compare with experiment. Next we present the design of a surface locomoting robot that uses two appendages for propulsion. From the appendage kinematics we derive the local connection vector field for locomotion kinematics and study the optimal gait for forward swimming. Lastly, we demonstrate robot swimming performance in open water conditions. The novel appendage design in this robot is advantageous because it enables omnidirectional movement, the appendages will not tangle in debris, and they are robust to collisions and contact with structures. 
    more » « less
  5. Wheelchair users (WCUs) face additional challenges than non-WCU to multi-tasking (i.e. open doors, cook, use a cell-phone) while navigating their environments. While assistive devices have attempted to provide WCUs with mobility solutions that enable multi-tasking capabilities, current devices have been developed without the input of end-users and have proven to be non-usable. More balanced approaches that integrate the end-users’ voices may improve current assistive technology usability trends. This study sought to empathically understand the lived experience of WCUs, their needs towards a mobility device, and their perceptions towards hands-free mobility. Full-time WCUs and care providers participated in semi-structured interviews examining wheelchair use and perceptions towards current and future mobility devices. Thematic analysis was used to analyze interview data. 9 WCUs (aged 32.1 ± 7.0 years; wheelchair experience 17.9 ± 11.6 years) and five care providers (years caring for WCU 3.75 ± 0.96 years) participated in the study. The most common disability type was spinal cord injury (WCUs: n = 3; care providers: n = 3). Qualitative analysis revealed four key themes: (1) Current wheelchair usage, (2) WCU and care provider perspectives, (3) Future wheelchair, and (4) Hands-free wheelchair. Accordingly, participants desire bespoke, light-weight mobility devices that can through tight spaces, access uneven terrain, and free the hands during navigation. This study provides meaningful insight into the needs of WCUs and care providers that assistive technology innovators can use to develop more usable assistive technologies. Amongst study participants, the concept of a hands-free mobility device appears to be usable and desirable. 
    more » « less