Abstract The effect of the environment on fitness in natural populations is a fundamental question in evolutionary biology. However, experimental manipulations of both environment and phenotype at the same time are rare. Thus, the relative importance of the competitive environment versus intrinsic organismal performance in shaping the location, height, and fluidity of fitness peaks and valleys remains largely unknown. Here, we experimentally tested the effect of competitor frequency on the complex fitness landscape driving adaptive radiation of a generalist and two trophic specialist pupfishes, a scale-eater and molluscivore, endemic to hypersaline lakes on San Salvador Island (SSI), Bahamas. We manipulated phenotypes, by generating 3407 F4/F5 lab-reared hybrids, and competitive environment, by altering the frequency of rare transgressive hybrids between field enclosures in two independent lake populations. We then tracked hybrid survival and growth rates across these four field enclosures for 3–11 months. In contrast to competitive speciation theory, we found no evidence that the frequency of hybrid phenotypes affected their survival. Instead, we observed a strikingly similar fitness landscape to a previous independent field experiment, each supporting multiple fitness peaks for generalist and molluscivore phenotypes and a large fitness valley isolating the divergent scale-eater phenotype. These features of the fitness landscape were stable across manipulated competitive environments, multivariate trait axes, and spatiotemporal heterogeneity. We suggest that absolute performance constraints and divergent gene regulatory networks shape macroevolutionary (interspecific) fitness landscapes in addition to microevolutionary (intraspecific) competitive dynamics. This interplay between organism and environment underlies static and dynamic features of the adaptive landscape.
more »
« less
The fitness landscape of a community of Darwin’s finches
Divergent natural selection should lead to adaptive radiation—that is, the rapid evolution of phenotypic and ecological diversity originating from a single clade. The drivers of adaptive radiation have often been conceptualized through the concept of “adaptive landscapes,” yet formal empirical estimates of adaptive landscapes for natural adaptive radiations have proven elusive. Here, we use a 17-year dataset of Darwin’s ground finches (Geospiza spp.) at an intensively studied site on Santa Cruz (Galápagos) to estimate individual apparent lifespan in relation to beak traits. We use these estimates to model a multi-species fitness landscape, which we also convert to a formal adaptive landscape. We then assess the correspondence between estimated fitness peaks and observed phenotypes for each of five phenotypic modes (G. fuliginosa, G. fortis [small and large morphotypes], G. magnirostris, and G. scandens). The fitness and adaptive landscapes show 5 and 4 peaks, respectively, and, as expected, the adaptive landscape was smoother than the fitness landscape. Each of the five phenotypic modes appeared reasonably close to the corresponding fitness peak, yet interesting deviations were also documented and examined. By estimating adaptive landscapes in an ongoing adaptive radiation, our study demonstrates their utility as a quantitative tool for exploring and predicting adaptive radiation.
more »
« less
- Award ID(s):
- 2025085
- PAR ID:
- 10548539
- Editor(s):
- Wagner, Catherine; Chapman, Tracey
- Publisher / Repository:
- Evolution
- Date Published:
- Journal Name:
- Evolution
- Volume:
- 77
- Issue:
- 12
- ISSN:
- 0014-3820
- Page Range / eLocation ID:
- 2533 to 2546
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
One of the main drivers of evolution is natural selection, which is when organisms better adapted to their environment are more likely to survive and reproduce. A common metaphor to explain this process is a landscape covered in peaks and valleys: the peaks represent genetic combinations or traits with high evolutionary fitness, while the valleys represent those with low fitness. As a population evolves and its environment changes, it moves among these peaks taking small steps across the landscape. However, there is a limit to how far an organism can travel in one leap. So, what happens when they need to cross a valley of low fitness to get to the next peak? To address this question, Patton et al. studied three young species of pupfish that recently evolved from a common ancestor and co-habit the same environment in the Caribbean. Patton et al. sequenced whole genomes of each new species and used this to build a genotypic fitness landscape, a network linking neighboring genotypes which each have a unique fitness value that was measured during field experiments. This revealed that most of the paths connecting the different species passed through valleys of low fitness. But there were rare, narrow ridges connecting each species. Next, Patton et al. found that new mutations as well as genetic variations that arose from mating with pupfish on other Caribbean islands altered genetic interactions and changed the shape of the fitness landscape. Ultimately, this significantly increased the accessibility of fitness peaks by both adding more ridges and decreasing the lengths of paths, expanding the realm of possible evolutionary outcomes. Understanding how fitness landscapes change during evolution could help to explain where new species come from. Other researchers could apply the same approach to estimate the genotypic fitness landscapes of other species, from bacteria to vertebrates. These networks could be used to visualize the complex fitness landscape that connects all lifeforms on Earth.more » « less
-
Synopsis Biologists are drawn to the most extraordinary adaptations in the natural world, often referred to as evolutionary novelties, yet rarely do we understand the microevolutionary context underlying the origins of novel traits, behaviors, or ecological niches. Here we discuss insights gained into the origins of novelty from a research program spanning biological levels of organization from genotype to fitness in Caribbean pupfishes. We focus on a case study of the origins of novel trophic specialists on San Salvador Island, Bahamas and place this radiation in the context of other rapid radiations. We highlight questions that can be addressed about the origins of novelty at different biological levels, such as measuring the isolation of novel phenotypes on the fitness landscape, locating the spatial and temporal origins of adaptive variation contributing to novelty, detecting dysfunctional gene regulation due to adaptive divergence, and connecting behaviors with novel traits. Evolutionary novelties are rare, almost by definition, and we conclude that integrative case studies can provide insights into this rarity relative to the dynamics of adaptation to more common ecological niches and repeated parallel speciation, such as the relative isolation of novel phenotypes on fitness landscapes and the transient availability of ecological, genetic, and behavioral opportunities.more » « less
-
Abstract A major challenge in evolutionary biology is explaining how populations navigate rugged fitness landscapes without getting trapped on local optima. One idea illustrated by adaptive dynamics theory is that as populations adapt, their newly enhanced capacities to exploit resources alter fitness payoffs and restructure the landscape in ways that promote speciation by opening new adaptive pathways. While there have been indirect tests of this theory, to our knowledge none have measured how fitness landscapes deform during adaptation, or test whether these shifts promote diversification. Here, we achieve this by studying bacteriophage$$\lambda$$ , a virus that readily speciates into co-existing receptor specialists under controlled laboratory conditions. We use a high-throughput gene editing-phenotyping technology to measure$$\lambda$$ ’s fitness landscape in the presence of different evolved-$$\lambda$$ competitors and find that the fitness effects of individual mutations, and their epistatic interactions, depend on the competitor. Using these empirical data, we simulate$$\lambda$$ ’s evolution on an unchanging landscape and one that recapitulates how the landscape deforms during evolution.$$\lambda$$ heterogeneity only evolves in the shifting landscape regime. This study provides a test of adaptive dynamics, and, more broadly, shows how fitness landscapes dynamically change during adaptation, potentiating phenomena like speciation by opening new adaptive pathways.more » « less
-
Rapid adaptive radiation poses a distinct question apart from speciation and adaptation: what happens after one speciation event? That is, how are some lineages able to continue speciating through a rapid burst? This question connects global macroevolutionary patterns to microevolutionary processes. Here we review major features of rapid radiations in nature and their mismatch with theoretical models and what is currently known about speciation mechanisms. Rapid radiations occur on three major diversification axes – species richness, phenotypic disparity, and ecological diversity – with exceptional outliers on each axis. The paradox is that the hallmark early stage of adaptive radiation, a rapid burst of speciation and niche diversification, is contradicted by most existing speciation models which instead predict continuously decelerating speciation rates and niche subdivision through time. Furthermore, while speciation mechanisms such as magic traits, phenotype matching, and physical linkage of co-adapted alleles promote speciation, it is often not discussed how these mechanisms could promote multiple speciation events in rapid succession. Additional mechanisms beyond ecological opportunity are needed to understand how rapid radiations occur. We review the evidence for five emerging theories: 1) the ‘transporter’ hypothesis: introgression and the ancient origins of adaptive alleles, 2) the ‘signal complexity’ hypothesis: the dimensionality of sexual traits, 3) the connectivity of fitness landscapes, 4) ‘diversity begets diversity’, and 5) flexible stem/‘plasticity first’. We propose new questions and predictions to guide future work on the mechanisms underlying the rare origins of rapid radiation.more » « less