skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interface Dependent Coexistence of Two‐Dimensional Electron and Hole Gases in Mn‐doped InAs/GaSb
Abstract The interface of common III‐V semiconductors InAs and GaSb can be utilized to realize a two‐dimensional (2D) topological insulator state. The 2D electronic gas at this interface can yield Hall quantization from coexisting electrons and holes. This anomaly is a determining factor in the fundamental origin of the topological state in InAs/GaSb. Here, the coexistence of electrons and holes in InAs/GaSb is tied to the chemical sharpness of the interface. Magnetotransport, in samples of Mn‐doped InAs/GaSb cleaved from wafers grown at a spatially inhomogeneous substrate temperature, is studied. It is reported that the observation of quantum oscillations and a quantized Hall effect whose behavior, exhibiting coexisting electrons and holes, is tuned by this spatial nonuniformity. Through transmission electron microscopy measurements, it is additionally found that samples that host this co‐existence exhibit a chemical intermixing between group III and group V atoms that extends over a larger thickness about the interface. The issue of intermixing at the interface is systematically overlooked in electronic transport studies of topological InAs/GaSb. These findings address this gap in knowledge and shed important light on the origin of the anomalous behavior of quantum oscillations seen in this 2D topological insulator.  more » « less
Award ID(s):
2313441
PAR ID:
10548573
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
12
Issue:
5
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Properties of a double-period InAs/GaSb superlattice grown by solid-source molecular beam epitaxy are presented. Precise growth conditions at the InAs/GaSb heterojunction yielded abrupt heterointerfaces and superior material quality as verified by X-ray diffraction and transmission electron microscopy (TEM) analysis. Moreover, high-resolution TEM imaging and elemental composition profiling of the InAs/GaSb heterostructure demonstrated abrupt atomic transitions between each Sb- or As-containing epilayer. An 8 × 8 k · p model is used to compute the electronic band structure of the constituent long- and short-period superlattices, taking into account the effects of conduction and valence band mixing, quantum confinement, pseudomorphic strain, and magnetic field on the calculated dispersions. Magnetotransport measurements over a variable temperature range (390 mK to 294 K) show anisotropic transport exhibiting a striking magnetoresistance and show Shubnikov-de Haas oscillations, the latter being indicative of high quality material synthesis. The measurements also reveal the existence of at least two carrier populations contributing to in-plane conductance in the structure. 
    more » « less
  2. Abstract As the thickness of a three-dimensional (3D) topological insulator (TI) becomes comparable to the penetration depth of surface states, quantum tunneling between surfaces turns their gapless Dirac electronic structure into a gapped spectrum. Whether the surface hybridization gap can host topological edge states is still an open question. Herein, we provide transport evidence of 2D topological states in the quantum tunneling regime of a bulk insulating 3D TI BiSbTeSe2. Different from its trivial insulating phase, this 2D topological state exhibits a finite longitudinal conductance at ~2e2/h when the Fermi level is aligned within the surface gap, indicating an emergent quantum spin Hall (QSH) state. The transition from the QSH to quantum Hall (QH) state in a transverse magnetic field further supports the existence of this distinguished 2D topological phase. In addition, we demonstrate a second route to realize the 2D topological state via surface gap-closing and topological phase transition mechanism mediated by a transverse electric field. The experimental realization of the 2D topological phase in a 3D TI enriches its phase diagram and marks an important step toward functionalized topological quantum devices. 
    more » « less
  3. Abstract In multilayered magnetic topological insulator structures, magnetization reversal processes can drive topological phase transitions between quantum anomalous Hall, axion insulator, and normal insulator states. Here we report an examination of the critical behavior of two such transitions: the quantum anomalous Hall to normal insulator (QAH-NI), and quantum anomalous Hall to axion insulator (QAH-AXI) transitions. By introducing a new analysis protocol wherein temperature dependent variations in the magnetic coercivity are accounted for, the critical behavior of the QAH-NI and QAH-AXI transitions are evaluated over a wide range of temperature and magnetic field. Despite the uniqueness of these different transitions, quantized longitudinal resistance and Hall conductance are observed at criticality in both cases. Furthermore, critical exponents were extracted for QAH-AXI transitions occurring at magnetization reversals of two different magnetic layers. The observation of consistent critical exponents and resistances in each case, independent of the magnetic layer details, demonstrates critical behaviors in quantum anomalous Hall transitions to be of electronic rather than magnetic origin. Our finding offers a new avenue for studies of phase transition and criticality in QAH insulators. 
    more » « less
  4. Spatial confinement of electronic topological surface states (TSSs) in topological insulators poses a formidable challenge because TSSs are protected by time-reversal symmetry. In previous works formation of a gap in the electronic spectrum of TSSs has been successfully demonstrated in topological insulator/magnetic material heterostructures, where ferromagnetic exchange interactions locally lift the time-reversal symmetry. Here we report experimental evidence of exchange interaction between a topological insulator Bi2Se3 and a magnetic insulator EuSe. Spin-polarized neutron reflectometry reveals a reduction of the in-plane magnetic susceptibility within a 2 nm interfacial layer of EuSe, and the combination of superconducting quantum interference device (SQUID) magnetometry and Hall measurements points to the formation of an interfacial layer with a suppressed net magnetic moment. This suppressed magnetization survives up to temperatures five times higher than the Néel temperature of EuSe. Its origin is attributed to the formation of an interfacial antiferromagnetic state. Abrupt resistance changes observed in high magnetic fields are consistent with antiferromagnetic domain reconstruction affecting transport in a TSS via exchange coupling. The high-temperature local control of TSSs with zero net magnetization unlocks new opportunities for the design of electronic, spintronic, and quantum computation devices, ranging from quantization of Hall conductance in zero fields to spatial localization of non-Abelian excitations in superconducting topological qubits. 
    more » « less
  5. Breaking the time-reversal symmetry on the surface of a topological insulator can open a gap for the linear dispersion and make the Dirac fermions massive. This can be achieved by either doping a topological insulator with magnetic elements or proximity-coupling it to magnetic insulators. While the exchange gap can be directly imaged in the former case, measuring it at the buried magnetic insulator/topological insulator interface remains to be challenging. Here, we report the observation of a large nonlinear Hall effect in iron garnet/Bi2Se3 heterostructures. Besides illuminating its magnetic origin, we also show that this nonlinear Hall effect can be utilized to measure the size of the exchange gap and the magnetic-proximity onset temperature. Our results demonstrate the nonlinear Hall effect as a spectroscopic tool to probe the modified band structure at magnetic insulator/topological insulator interfaces. 
    more » « less