skip to main content


Title: Structural, morphological and magnetotransport properties of composite semiconducting and semimetallic InAs/GaSb superlattice structure
Properties of a double-period InAs/GaSb superlattice grown by solid-source molecular beam epitaxy are presented. Precise growth conditions at the InAs/GaSb heterojunction yielded abrupt heterointerfaces and superior material quality as verified by X-ray diffraction and transmission electron microscopy (TEM) analysis. Moreover, high-resolution TEM imaging and elemental composition profiling of the InAs/GaSb heterostructure demonstrated abrupt atomic transitions between each Sb- or As-containing epilayer. An 8 × 8 k · p model is used to compute the electronic band structure of the constituent long- and short-period superlattices, taking into account the effects of conduction and valence band mixing, quantum confinement, pseudomorphic strain, and magnetic field on the calculated dispersions. Magnetotransport measurements over a variable temperature range (390 mK to 294 K) show anisotropic transport exhibiting a striking magnetoresistance and show Shubnikov-de Haas oscillations, the latter being indicative of high quality material synthesis. The measurements also reveal the existence of at least two carrier populations contributing to in-plane conductance in the structure.  more » « less
Award ID(s):
1809120
PAR ID:
10180828
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Materials Advances
ISSN:
2633-5409
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Material properties of Ga–Sb binary alloy thin films deposited under ultra-high vacuum conditions were studied for analog phase change memory (PCM) applications. Crystallization of this alloy was shown to occur in the temperature range of 180–264 °C, with activation energy >2.5 eV depending on the composition. X-ray diffraction (XRD) studies showed phase separation upon crystallization into two phases, Ga-doped A7 antimony and cubic zinc-blende GaSb. Synchrotron in situ XRD analysis revealed that crystallization into the A7 phase is accompanied by Ga out-diffusion from the grains. X-ray absorption fine structure studies of the local structure of these alloys demonstrated a bond length decrease with a stable coordination number of 4 upon amorphous-to-crystalline phase transformation. Mushroom cell structures built with Ga–Sb alloys on ø110 nm TiN heater show a phase change material resistance switching behavior with resistance ratio >100 under electrical pulse measurements. TEM and Energy Dispersive Spectroscopy (EDS) studies of the Ga–Sb cells after ∼100 switching cycles revealed that partial SET or intermediate resistance states are attained by the variation of the grain size of the material as well as the Ga content in the A7 phase. A mechanism for a reversible composition control is proposed for analog cell performance. These results indicate that Te-free Ga–Sb binary alloys are potential candidates for analog PCM applications. 
    more » « less
  2. Optical filters with narrow transmission band above the bandgap of thermophotovoltaic (TPV) cells are not restrained by the rigorous thermal reliability as needed for the emitters. In this work, a novel metasurface filter made of an aluminum nanopillar (AlNP) array on a quartz substrate is proposed to achieve spectrally selective transmission above the bandgap of the TPV cell. Optical simulations using Finite-difference time-domain were carefully performed to determine the appropriate AlNP period, diameter, and height such that the resulting nanopillar array will show narrowband transmission at a wavelength of 1.9 μm, which is close to the bandgap of a commercial gallium antimonide (GaSb) TPV cell. The narrow-band transmission enhancement can be attributed to the magnetic polariton (MP) resonance between neighboring Al nanopillars. The MP mechanism is further confirmed by an inductor-capacitor circuit model and the effects of the nanopillars period, diameter, height, as well as incidence angles were discussed. Moreover, open-circuit voltage, short-circuit current density, output electric power, and conversion efficiency were evaluated for the GaSb TPV cell coupled with the AlNP metasurface filter structure with enhanced TPV performance. 
    more » « less
  3. Germanium telluride is a high performing thermoelectric material that additionally serves as a base for alloys such as GeTe–AgSbTe 2 and GeTe–PbTe. Such performance motivates exploration of other GeTe alloys in order understand the impact of site substitution on electron and phonon transport. In this work, we consider the root causes of the high thermoelectric performance material Ge 1− x Mn x Te. Along this alloy line, the crystal structure, electronic band structure, and electron and phonon scattering all depend heavily on the Mn content. Structural analysis of special quasirandom alloy structures indicate the thermodynamic stability of the rock salt phase over the rhombohedral phase with increased Mn incorporation. Effective band structure calculations indicate band convergence, the emergence of new valence band maxima, and strong smearing at the band edge with increased Mn content in both phases. High temperature measurements on bulk polycrystalline samples show a reduction in hole mobility and a dramatic increase in effective mass with respect to increasing Mn content. In contrast, synthesis as a function of tellurium chemical potential does not significantly impact electronic properties. Thermal conductivity shows a minimum near the rhombohedral to cubic phase transition, while the Mn Ge point defect scattering is weak as indicated by the low K L dependence on the Ge–Mn fraction (Fig. 10). From this work, alloys near this phase transition show optimal performance due to low thermal conductivity, moderate effective mass, and low scattering rates compared to Mn-rich compositions. 
    more » « less
  4. Sb thin films have attracted wide interest due to their tunable band structure, topological phases, high electron mobility, and thermoelectric properties. We successfully grow epitaxial Sb thin films on a closely lattice-matched GaSb(001) surface by molecular beam epitaxy. We find a novel anisotropic directional dependence on their structural, morphological, and electronic properties. The origin of the anisotropic features is elucidated using first-principles density functional theory (DFT) calculations. The growth regime of crystalline and amorphous Sb thin films was determined by mapping the surface reconstruction phase diagram of the GaSb(001) surface under Sb2 flux, with confirmation of structural characterizations. Crystalline Sb thin films show a rhombohedral crystal structure along the rhombohedral (211) surface orientation parallel to the cubic (001) surface orientation of the GaSb substrate. At this coherent interface, Sb atoms are aligned with the GaSb lattice along the [1̄10] crystallographic direction but are not aligned well along the [110] crystallographic direction, which results in anisotropic features in reflection of high-energy electron diffraction patterns, misfit dislocation formation, surface morphology, and transport properties. Our DFT calculations show that the preferential orientation of the rhombohedral Sb (211) plane may originate from the GaSb surface, where Sb atoms align with the Ga and Sb atoms on the reconstructed surface. The formation energy calculations confirm the stability of the experimentally observed structures. Our results provide optimal film growth conditions for further studies of novel properties of Bi1−xSbx thin films with similar lattice parameters and an identical crystal structure, as well as functional heterostructures of them with III–V semiconductor layers along the (001) surface orientation, supported by a theoretical understanding of the anisotropic film orientation.

     
    more » « less
  5. Abstract

    Here, unbiased water splitting with 2% solar‐to‐hydrogen efficiency under AM 1.5 G illumination using new materials based on GaSb0.03P0.97alloy is reported. Freestanding GaSbxP1−xis grown using halide vapor phase epitaxy. The native conductivity type of the alloy is modified by silicon doping, resulting in an open‐circuit potential (OCP) of 750 mV, photocurrents of 7 mA cm−2at 10 sun illumination, and corrosion resistance in an aqueous acidic environment. Alloying GaP with Sb at 3 at% improves the absorption of high‐energy photons above 2.68 eV compared to pure GaP material. Electrochemical Impedance Spectroscopy and illuminated OCP measurements show that the conduction band of GaSbxP1−xis at −0.55 V versus RHE irrespective of the Sb concentration, while photocurrent spectroscopy indicates that only radiation with photon energies greater than 2.68 eV generate mobile and extractable charges, thus suggesting that the higher‐laying conduction bands in the Γ 1 valley of the alloys are responsible for exciton generation.

     
    more » « less