skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Review Article: A Comprehensive Review of Compound Flooding Literature with a Focus on Coastal and Estuarine Regions
Abstract. Compound flooding, where the combination or successive occurrence of two or more flood drivers leads to a greater impact, can exacerbate the adverse consequences of flooding, particularly in coastal/estuarine regions. This paper reviews the practices and trends in coastal/estuarine compound flood research and synthesizes regional to global findings. Systematic review is employed to construct a literature database of 271 studies relevant to compound flooding in a coastal/estuarine context. This review explores the types of compound flood events, their mechanistic processes, and synthesizes terminology throughout the literature. Considered in the review are six flood drivers (fluvial, pluvial, coastal, groundwater, damming/dam failure, and tsunami) and five precursor events and environmental conditions (soil moisture, snow, temp/heat, fire, and drought). Furthermore, this review summarizes research methodology and study applications trends, and considers the influences of climate change and urban environments. Finally, this review highlights knowledge gaps in compound flood research and discusses the implications on future practices. Our five recommendations for compound flood research are: 1) adopt consistent terminology and approaches; 2) expand the geographic coverage of research; 3) pursue more inter-comparison projects; 4) develop modelling frameworks that better couple dynamic Earth systems; and 5) design urban and coastal infrastructure with compounding in mind.  more » « less
Award ID(s):
1929382
PAR ID:
10548643
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
EGU
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Compound flooding events are a threat to many coastal regions and can have widespread socio-economic implications. However, their frequency of occurrence, underlying flood drivers, and direct link to past socio-economic losses are largely unknown despite being key to supporting risk and adaptation assessments. Here, we present an impact-based analysis of compound flooding for 203 coastal counties along the U.S. Gulf and East coasts by combining data from multiple flood drivers and socio-economic loss information from 1980 to 2018. We find that ~80% of all flood events recorded in our study area were compound rather than univariate. In addition, we show that historical compound flooding events in most counties were driven by more than two flood drivers (hydrological, meteorological, and/or oceanographic) and distinct spatial clusters exist that exhibit variability in the underlying driver of compound flood events. Furthermore, we find that in more than 80% of the counties, over 80% of recorded property and crop losses were linked to compound flooding. Nearly 80% of counties have a higher median loss from compound than univariate events. For these counties, the median property loss is over 26 times greater, and the median crop loss is over 76 times greater for compound events on average. Our analysis overcomes some of the limitations of previous compound-event studies based on pre-defined flood drivers and offers new insights into the complex relationship between hazards and associated socio-economic impacts. 
    more » « less
  2. Abstract. The interaction between storm surge and concurrent precipitation is poorly understood in many coastal regions. This paper investigates the potential compound effects from these two flooding drivers along the coast of China for the first time by using the most comprehensive records of storm surge and precipitation. Statistically significant dependence between flooding drivers exists at the majority of locations that are analysed, but the strength of the correlation varies spatially and temporally and depending on how extreme events are defined. In general, we find higher dependence at the south-eastern tide gauges (TGs) (latitude < 30∘ N) compared to the northern TGs. Seasonal variations in the dependence are also evident. Overall there are more sites with significant dependence in the tropical cyclone (TC) season, especially in the summer. Accounting for past sea level rise further increases the dependence between flooding drivers, and future sea level rise will hence likely lead to an increase in the frequency of compound events. We also find notable differences in the meteorological patterns associated with events where both drivers are extreme versus events where only one driver is extreme. Events with both extreme drivers at south-eastern TG sites are caused by low-pressure systems with similar characteristics across locations, including high precipitable water content (PWC) and strong winds that generate high storm surge. Based on historical disaster damages records of Hong Kong, events with both extreme drivers account for the vast majority of damages and casualties, compared to univariate flooding events, where only one flooding driver occurred. Given the large coastal population and low capacity of drainage systems in many Chinese urban coastal areas, these findings highlight the necessity to incorporate compound flooding and its potential changes in a warming climate into risk assessments, urban planning, and the design of coastal infrastructure and flood defences. 
    more » « less
  3. As coastal regions face escalating risks from flooding in a changing climate, Nature-based Solutions (NbS) have garnered attention as promising adaptation measures to mitigate the destructive impacts of coastal flooding. However, the challenge of compound flooding, which involves the combined effects of multiple flood drivers, demands a deeper understanding of the efficacy of NbS against this complex phenomenon. This manuscript reviews the literature on process-based modeling of NbS for mitigating compound coastal flooding and identifies knowledge gaps to enhance future research efforts. We used an automated search strategy within the SCOPUS database, followed by a screening process that ultimately resulted in 141 publications assessing the functionality of NbS against coastal flooding. Our review identified a dearth of research (9 %) investigating the performance of NbS against compound flooding scenarios. We examined the challenges and complexities involved in modeling such scenarios, including hydrologic, hydrodynamic, and ecological feedback processes by exploring the studies that used a process-based modeling framework. Key research gaps were identified, such as navigating the complex environment, managing computational costs, and addressing the shortages of experts and data. We outlined potential modeling pathways to improve NbS characterization in the compound flooding framework. Additionally, uncertainties associated with numerical modeling and steps to bridge the research-to-operation gaps were briefly discussed, highlighting the bottlenecks in operational implementation. 
    more » « less
  4. Abstract. In coastal regions, compound flooding can arise from a combination of different drivers such as storm surges, high tides, excess river discharge, and rainfall. Compound flood potential is often assessed by quantifying the dependence and joint probabilities of the flood drivers using multivariate models. However, most of these studies assume that all extreme events originate from a single population. This assumption may not be valid for regions where flooding can arise from different generation processes, e.g., tropical cyclones (TCs) and extratropical cyclones (ETCs). Here we present a flexible copula-based statistical framework to assess compound flood potential from multiple flood drivers while explicitly accounting for different storm types. The proposed framework is applied to Gloucester City, New Jersey, and St. Petersburg, Florida as case studies. Our results highlight the importance of characterizing the contributions from TCs and non-TCs separately to avoid potential underestimation of the compound flood potential. In both study regions, TCs modulate the tails of the joint distributions (events with higher return periods) while non-TC events have a strong effect on events with low to moderate joint return periods. We show that relying solely on TCs may be inadequate when estimating compound flood risk in coastal catchments that are also exposed to other storm types. We also assess the impact of non-classified storms that are neither linked to TCs or ETCs in the region (such as locally generated convective rainfall events and remotely forced storm surges). The presented study utilizes historical data and analyzes two populations, but the framework is flexible and can be extended to account for additional storm types (e.g., storms with certain tracks or other characteristics) or can be used with model output data including hindcasts or future projections. 
    more » « less
  5. In coastal regions, compound flooding can arise from a combination of different drivers, such as storm surges, high tides, excess river discharge, and rainfall. Compound flood potential is often assessed by quantifying the dependence and joint probabilities of flood drivers using multivariate models. However, most of these studies assume that all extreme events originate from a single population. This assumption may not be valid for regions where flooding can arise from different generation processes, e.g., tropical cyclones (TCs) and extratropical cyclones (ETCs). Here we present a flexible copula-based statistical framework to assess compound flood potential from multiple flood drivers while explicitly accounting for different storm types. The proposed framework is applied to Gloucester City, New Jersey, and St. Petersburg, Florida, as case studies. Our results highlight the importance of characterizing the contributions from TCs and non-TCs separately to avoid potential underestimation of the compound flood potential. In both study regions, TCs modulate the tails of the joint distributions (events with higher return periods), while non-TC events have a strong effect on events with low to moderate joint return periods. We show that relying solely on TCs may be inadequate when estimating compound flood risk in coastal catchments that are also exposed to other storm types. We also assess the impact of non-classified storms that are not linked to either TCs or ETCs in the region (such as locally generated convective rainfall events and remotely forced storm surges). The presented study utilizes historical data and analyzes two populations, but the framework is flexible and can be extended to account for additional storm types (e.g., storms with certain tracks or other characteristics) or can be used with model output data including hindcasts or future projections. 
    more » « less