skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adversarial-Robust Transfer Learning for Medical Imaging via Domain Assimilation
Extensive research in Medical Imaging aims to uncover critical diagnostic features in patients, with AI-driven medical diagnosis relying on sophisticated machine learning and deep learning models to analyze, detect, and identify diseases from medical images. Despite the remarkable accuracy of these models under normal conditions, they grapple with trustworthiness issues, where their output could be manipulated by adversaries who introduce strategic perturbations to the input images. Furthermore, the scarcity of publicly available medical images, constituting a bottleneck for reliable training, has led contemporary algorithms to depend on pretrained models grounded on a large set of natural images—a practice referred to as transfer learning. However, a significant domain discrepancy exists between natural and medical images, which causes AI models resulting from transfer learning to exhibit heightened vulnerability to adversarial attacks. This paper proposes a domain assimilation approach that introduces texture and color adaptation into transfer learning, followed by a texture preservation component to suppress undesired distortion. We systematically analyze the performance of transfer learning in the face of various adversarial attacks under different data modalities, with the overarching goal of fortifying the model’s robustness and security in medical imaging tasks. The results demonstrate high effectiveness in reducing attack efficacy, contributing toward more trustworthy transfer learning in biomedical applications.  more » « less
Award ID(s):
2008878
PAR ID:
10548720
Author(s) / Creator(s):
;
Editor(s):
Yang, DN; Xie, X; Tseng, VS; Pei, J; Huang, JW; Lin, JCW
Publisher / Repository:
Lecture Notes in Computer Science, Springer; Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) 2024
Date Published:
Volume:
14648
ISBN:
978-981-97-2238-9
Page Range / eLocation ID:
335–349
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Yang, DN; Xie, X; Tseng, VS; Pei, J; Huang, JW; Lin, JCW (Ed.)
    Extensive research in Medical Imaging aims to uncover critical diagnostic features in patients, with AI-driven medical diagnosis relying on sophisticated machine learning and deep learning models to analyze, detect, and identify diseases from medical images. Despite the remarkable accuracy of these models under normal conditions, they grapple with trustworthiness issues, where their output could be manipulated by adversaries who introduce strategic perturbations to the input images. Furthermore, the scarcity of publicly available medical images, constituting a bottleneck for reliable training, has led contemporary algorithms to depend on pretrained models grounded on a large set of natural images—a practice referred to as transfer learning. However, a significant domain discrepancy exists between natural and medical images, which causes AI models resulting from transfer learning to exhibit heightened vulnerability to adversarial attacks. This paper proposes a domain assimilation approach that introduces texture and color adaptation into transfer learning, followed by a texture preservation component to suppress undesired distortion. We systematically analyze the performance of transfer learning in the face of various adversarial attacks under different data modalities, with the overarching goal of fortifying the model’s robustness and security in medical imaging tasks. The results demonstrate high effectiveness in reducing attack efficacy, contributing toward more trustworthy transfer learning in biomedical applications. 
    more » « less
  2. While active efforts are advancing medical artificial intelligence (AI) model development and clinical translation, safety issues of the AI models emerge, but little research has been done. We perform a study to investigate the behaviors of an AI diagnosis model under adversarial images generated by Generative Adversarial Network (GAN) models and to evaluate the effects on human experts when visually identifying potential adversarial images. Our GAN model makes intentional modifications to the diagnosis-sensitive contents of mammogram images in deep learning-based computer-aided diagnosis (CAD) of breast cancer. In our experiments the adversarial samples fool the AI-CAD model to output a wrong diagnosis on 69.1% of the cases that are initially correctly classified by the AI-CAD model. Five breast imaging radiologists visually identify 29%-71% of the adversarial samples. Our study suggests an imperative need for continuing research on medical AI model’s safety issues and for developing potential defensive solutions against adversarial attacks. 
    more » « less
  3. In the context of medical artificial intelligence, this study explores the vulnerabilities of the Pathology Language-Image Pretraining (PLIP) model, a Vision Language Foundation model, under targeted attacks. Leveraging the Kather Colon dataset with 7,180 H&E images across nine tissue types, our investigation employs Projected Gradient Descent (PGD) adversarial perturbation attacks to induce misclassifications intentionally. The outcomes reveal a 100% success rate in manipulating PLIP’s predictions, underscoring its susceptibility to adversarial perturbations. The qualitative analysis of adversarial examples delves into the interpretability challenges, shedding light on nuanced changes in predictions induced by adversarial manipulations. These findings contribute crucial insights into the interpretability, domain adaptation, and trustworthiness of Vision Language Models in medical imaging. The study emphasizes the pressing need for robust defenses to ensure the reliability of AI models. The source codes for this experiment can be found at https://github.com/jaiprakash1824/VLM Adv Attack. 
    more » « less
  4. Deep learning (DL) models have demonstrated state-of-the-art performance in the classification of diagnostic imaging in oncology. However, DL models for medical images can be compromised by adversarial images, where pixel values of input images are manipulated to deceive the DL model. To address this limitation, our study investigates the detectability of adversarial images in oncology using multiple detection schemes. Experiments were conducted on thoracic computed tomography (CT) scans, mammography, and brain magnetic resonance imaging (MRI). For each dataset we trained a convolutional neural network to classify the presence or absence of malignancy. We trained five DL and machine learning (ML)-based detection models and tested their performance in detecting adversarial images. Adversarial images generated using projected gradient descent (PGD) with a perturbation size of 0.004 were detected by the ResNet detection model with an accuracy of 100% for CT, 100% for mammogram, and 90.0% for MRI. Overall, adversarial images were detected with high accuracy in settings where adversarial perturbation was above set thresholds. Adversarial detection should be considered alongside adversarial training as a defense technique to protect DL models for cancer imaging classification from the threat of adversarial images. 
    more » « less
  5. Deep learning (DL) has attracted interest in healthcare for disease diagnosis systems in medical imaging analysis (MedIA) and is especially applicable in Big Data environments like federated learning (FL) and edge computing. However, there is little research into mitigating the vulnerabilities and robustness of such systems against adversarial attacks, which can force DL models to misclassify, leading to concerns about diagnosis accuracy. This paper aims to evaluate the robustness and scalability of DL models for MedIA applications against adversarial attacks while ensuring their applicability in FL settings with Big Data. We fine-tune three state-of-the-art transfer learning models, DenseNet121, MobileNet-V2, and ResNet50, on several MedIA datasets of varying sizes and show that they are effective at disease diagnosis. We then apply the Fast Gradient Sign Method (FGSM) to attack the models and utilize adversarial training (AT) and knowledge distillation to defend them. We provide a performance comparison of the original transfer learning models and the defended models on the clean and perturbed data. The experimental results show that the defensive techniques can improve the robustness of the models to the FGSM attack and be scaled for Big Data as well as utilized for edge computing environments. 
    more » « less