skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 15, 2025

Title: Towards More Robust and Scalable Deep Learning Systems for Medical Image Analysis
Deep learning (DL) has attracted interest in healthcare for disease diagnosis systems in medical imaging analysis (MedIA) and is especially applicable in Big Data environments like federated learning (FL) and edge computing. However, there is little research into mitigating the vulnerabilities and robustness of such systems against adversarial attacks, which can force DL models to misclassify, leading to concerns about diagnosis accuracy. This paper aims to evaluate the robustness and scalability of DL models for MedIA applications against adversarial attacks while ensuring their applicability in FL settings with Big Data. We fine-tune three state-of-the-art transfer learning models, DenseNet121, MobileNet-V2, and ResNet50, on several MedIA datasets of varying sizes and show that they are effective at disease diagnosis. We then apply the Fast Gradient Sign Method (FGSM) to attack the models and utilize adversarial training (AT) and knowledge distillation to defend them. We provide a performance comparison of the original transfer learning models and the defended models on the clean and perturbed data. The experimental results show that the defensive techniques can improve the robustness of the models to the FGSM attack and be scaled for Big Data as well as utilized for edge computing environments.  more » « less
Award ID(s):
2348417
PAR ID:
10610719
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-6248-0
Page Range / eLocation ID:
7577 to 7585
Format(s):
Medium: X
Location:
Washington, DC, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Transfer learning using pre-trained deep neural networks (DNNs) has been widely used for plant disease identification recently. However, pre-trained DNNs are susceptible to adversarial attacks which generate adversarial samples causing DNN models to make wrong predictions. Successful adversarial attacks on deep learning (DL)-based plant disease identification systems could result in a significant delay of treatments and huge economic losses. This paper is the first attempt to study adversarial attacks and detection on DL-based plant disease identification. Our results show that adversarial attacks with a small number of perturbations can dramatically degrade the performance of DNN models for plant disease identification. We also find that adversarial attacks can be effectively defended by using adversarial sample detection with an appropriate choice of features. Our work will serve as a basis for developing more robust DNN models for plant disease identification and guiding the defense against adversarial attacks. 
    more » « less
  2. With rich visual data, such as images, becoming readily associated with items, visually-aware recommendation systems (VARS) have been widely used in different applications. Recent studies have shown that VARS are vulnerable to item-image adversarial attacks, which add human-imperceptible perturbations to the clean images associated with those items. Attacks on VARS pose new security challenges to a wide range of applications, such as e-commerce and social media, where VARS are widely used. How to secure VARS from such adversarial attacks becomes a critical problem. Currently, there is still a lack of systematic studies on how to design defense strategies against visual attacks on VARS. In this article, we attempt to fill this gap by proposing anadversarial image denoising and detectionframework to secure VARS. Our proposed method can simultaneously (1) secure VARS from adversarial attacks characterized bylocalperturbations by image denoising based onglobalvision transformers; and (2) accurately detect adversarial examples using a novel contrastive learning approach. Meanwhile, our framework is designed to be used as both a filter and a detector so that they can bejointlytrained to improve the flexibility of our defense strategy to a variety of attacks and VARS models. Our approach is uniquely tailored for VARS, addressing the distinct challenges in scenarios where adversarial attacks can differ across industries, for instance, causing misclassification in e-commerce or misrepresentation in real estate. We have conducted extensive experimental studies with two popular attack methods (FGSM and PGD). Our experimental results on two real-world datasets show that our defense strategy against visual attacks is effective and outperforms existing methods on different attacks. Moreover, our method demonstrates high accuracy in detecting adversarial examples, complementing its robustness across various types of adversarial attacks. 
    more » « less
  3. null (Ed.)
    Deep Neural Network (DNN) trained by the gradient descent method is known to be vulnerable to maliciously perturbed adversarial input, aka. adversarial attack. As one of the countermeasures against adversarial attacks, increasing the model capacity for DNN robustness enhancement was discussed and reported as an effective approach by many recent works. In this work, we show that shrinking the model size through proper weight pruning can even be helpful to improve the DNN robustness under adversarial attack. For obtaining a simultaneously robust and compact DNN model, we propose a multi-objective training method called Robust Sparse Regularization (RSR), through the fusion of various regularization techniques, including channel-wise noise injection, lasso weight penalty, and adversarial training. We conduct extensive experiments to show the effectiveness of RSR against popular white-box (i.e., PGD and FGSM) and black-box attacks. Thanks to RSR, 85 % weight connections of ResNet-18 can be pruned while still achieving 0.68 % and 8.72 % improvement in clean- and perturbed-data accuracy respectively on CIFAR-10 dataset, in comparison to its PGD adversarial training baseline. 
    more » « less
  4. Neural network classifiers are known to be highly vulnerable to adversarial perturbations in their inputs. Under the hypothesis that adversarial examples lie outside of the sub-manifold of natural images, previous work has investigated the impact of principal components in data on adversarial robustness. In this paper we show that there exists a very simple defense mechanism in the case where adversarial images are separable in a previously defined $(k,p)$ metric. This defense is very successful against the popular Carlini-Wagner attack, but less so against some other common attacks like FGSM. It is interesting to note that the defense is still successful for relatively large perturbations. 
    more » « less
  5. Due to its decentralized nature, Federated Learning (FL) lends itself to adversarial attacks in the form of backdoors during training. The goal of a backdoor is to corrupt the performance of the trained model on specific sub-tasks (e.g., by classifying green cars as frogs). A range of FL backdoor attacks have been introduced in the literature, but also methods to defend against them, and it is currently an open question whether FL systems can be tailored to be robust against backdoors. In this work, we provide evidence to the contrary. We first establish that, in the general case, robustness to backdoors implies model robustness to adversarial examples, a major open problem in itself. Furthermore, detecting the presence of a backdoor in a FL model is unlikely assuming first order oracles or polynomial time. We couple our theoretical results with a new family of backdoor attacks, which we refer to as edge-case backdoors. An edge-case backdoor forces a model to misclassify on seemingly easy inputs that are however unlikely to be part of the training, or test data, i.e., they live on the tail of the input distribution. We explain how these edge-case backdoors can lead to unsavory failures and may have serious repercussions on fairness, and exhibit that with careful tuning at the side of the adversary, one can insert them across a range of machine learning tasks (e.g., image classification, OCR, text prediction, sentiment analysis). 
    more » « less