skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predicting metabolic modules in incomplete bacterial genomes with MetaPathPredict
The reconstruction of complete microbial metabolic pathways using ‘omics data from environmental samples remains challenging. Computational pipelines for pathway reconstruction that utilize machine learning methods to predict the presence or absence of KEGG modules in incomplete genomes are lacking. Here, we present MetaPathPredict, a software tool that incorporates machine learning models to predict the presence of complete KEGG modules within bacterial genomic datasets. Using gene annotation data and information from the KEGG module database, MetaPathPredict employs deep learning models to predict the presence of KEGG modules in a genome. MetaPathPredict can be used as a command line tool or as a Python module, and both options are designed to be run locally or on a compute cluster. Benchmarks show that MetaPathPredict makes robust predictions of KEGG module presence within highly incomplete genomes.  more » « less
Award ID(s):
1924492
PAR ID:
10548768
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
eLife
Date Published:
Journal Name:
eLife
Volume:
13
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rajalakshmi, Manikkam (Ed.)
    The mapping of metabolite-specific data to pathways within cellular metabolism is a major data analysis step needed for biochemical interpretation. A variety of machine learning approaches, particularly deep learning approaches, have been used to predict these metabolite-to-pathway mappings, utilizing a training dataset of known metabolite-to-pathway mappings. A few such training datasets have been derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG). However, several prior published machine learning approaches utilized an erroneous KEGG-derived training dataset that used SMILES molecular representations strings (KEGG-SMILES dataset) and contained a sizable proportion (~26%) duplicate entries. The presence of so many duplicates taint the training and testing sets generated from k-fold cross-validation of the KEGG-SMILES dataset. Therefore, the k-fold cross-validation performance of the resulting machine learning models was grossly inflated by the erroneous presence of these duplicate entries. Here we describe and evaluate the KEGG-SMILES dataset so that others may avoid using it. We also identify the prior publications that utilized this erroneous KEGG-SMILES dataset so their machine learning results can be properly and critically evaluated. In addition, we demonstrate the reduction of model k-fold cross-validation (CV) performance after de-duplicating the KEGG-SMILES dataset. This is a cautionary tale about properly vetting prior published benchmark datasets before using them in machine learning approaches. We hope others will avoid similar mistakes. 
    more » « less
  2. Metabolic pathways are a human-defined grouping of life sustaining biochemical reactions, metabolites being both the reactants and products of these reactions. But many public datasets include identified metabolites whose pathway involvement is unknown, hindering metabolic interpretation. To address these shortcomings, various machine learning models, including those trained on data from the Kyoto Encyclopedia of Genes and Genomes (KEGG), have been developed to predict the pathway involvement of metabolites based on their chemical descriptions; however, these prior models are based on old metabolite KEGG-based datasets, including one benchmark dataset that is invalid due to the presence of over 1500 duplicate entries. Therefore, we have developed a new benchmark dataset derived from the KEGG following optimal standards of scientific computational reproducibility and including all source code needed to update the benchmark dataset as KEGG changes. We have used this new benchmark dataset with our atom coloring methodology to develop and compare the performance of Random Forest, XGBoost, and multilayer perceptron with autoencoder models generated from our new benchmark dataset. Best overall weighted average performance across 1000 unique folds was an F1 score of 0.8180 and a Matthews correlation coefficient of 0.7933, which was provided by XGBoost binary classification models for 11 KEGG-defined pathway categories. 
    more » « less
  3. Metabolism is a network of chemical reactions that sustain cellular life. Parts of this metabolic network are defined as metabolic pathways containing specific biochemical reactions. Products and reactants of these reactions are called metabolites, which are associated with certain human-defined metabolic pathways. Metabolic knowledgebases, such as the Kyoto Encyclopedia of Gene and Genomes (KEGG) contain metabolites, reactions, and pathway annotations; however, such resources are incomplete due to current limits of metabolic knowledge. To fill in missing metabolite pathway annotations, past machine learning models showed some success at predicting the KEGG Level 2 pathway category involvement of metabolites based on their chemical structure. Here, we present the first machine learning model to predict metabolite association to more granular KEGG Level 3 metabolic pathways. We used a feature and dataset engineering approach to generate over one million metabolite-pathway entries in the dataset used to train a single binary classifier. This approach produced a mean Matthews correlation coefficient (MCC) of 0.806 ± 0.017 SD across 100 cross-validation iterations. The 172 Level 3 pathways were predicted with an overall MCC of 0.726. Moreover, metabolite association with the 12 Level 2 pathway categories was predicted with an overall MCC of 0.891, representing significant transfer learning from the Level 3 pathway entries. These are the best metabolite pathway prediction results published so far in the field. 
    more » « less
  4. Background/Objectives: Predicting the biochemical pathway involvement of a compound could facilitate the interpretation of biological and biomedical research. Prior prediction approaches have largely focused on metabolism, training machine learning models to solely predict based on metabolic pathways. However, there are many other types of pathways in cells and organisms that are of interest to biologists. Methods: While several publications have made use of the metabolites and metabolic pathways available in the Kyoto Encyclopedia of Genes and Genomes (KEGG), we downloaded all the compound entries with pathway annotations available in the KEGG. From these data, we constructed a dataset where each entry contained features representing compounds combined with features representing pathways, followed by a binary label indicating whether the given compound is associated with the given pathway. We trained multi-layer perceptron binary classifiers on variations of this dataset. Results: The models trained on 6485 KEGG compounds and 502 pathways scored an overall mean Matthews correlation coefficient (MCC) performance of 0.847, a median MCC of 0.848, and a standard deviation of 0.0098. Conclusions: This performance on all 502 KEGG pathways represents a roughly 6% improvement over the performance of models trained on only the 184 KEGG metabolic pathways, which had a mean MCC of 0.800 and a standard deviation of 0.021. These results demonstrate the capability to effectively predict biochemical pathways in general, in addition to those specifically related to metabolism. Moreover, the improvement in the performance demonstrates additional transfer learning with the inclusion of non-metabolic pathways. 
    more » « less
  5. Recent discoveries by neutrino telescopes, such as the IceCube Neutrino Observatory, relied extensively on machine learning (ML) tools to infer physical quantities from the raw photon hits detected. Neutrino telescope reconstruction algorithms are limited by the sparse sampling of photons by the optical modules due to the relatively large spacing (10–100 m) between them. In this Letter, we propose a novel technique that learns photon transport through the detector medium through the use of deep-learning-driven superresolution of data events. These “improved” events can then be reconstructed using traditional or ML techniques, resulting in improved resolution. Our strategy arranges additional “virtual” optical modules within an existing detector geometry and trains a convolutional neural network to predict the hits on these virtual optical modules. We show that this technique improves the angular reconstruction of muons in a generic ice-based neutrino telescope. Our results readily extend to water-based neutrino telescopes and other event morphologies. Published by the American Physical Society2025 
    more » « less