skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid Prototyping for Coordinated Views of Multi-scale Spatial and Abstract Data: A Grammar-based Approach
Visualization grammars are gaining popularity as they allow visualization specialists and experienced users to quickly create static and interactive views. Existing grammars, however, mostly focus on abstract views, ignoring three-dimensional (3D) views, which are very important in fields such as natural sciences. We propose a generalized interaction grammar for the problem of coordinating heterogeneous view types, such as standard charts (e.g., based on Vega-Lite) and 3D anatomical views. An important aspect of our web-based framework is that user interactions with data items at various levels of detail can be systematically integrated and used to control the overall layout of the application workspace. With the help of a concise JSON-based specification of the intended workflow, we can handle complex interactive visual analysis scenarios. This enables rapid prototyping and iterative refinement of the visual analysis tool in collaboration with domain experts. We illustrate the usefulness of our framework in two real-world case studies from the field of neuroscience. Since the logic of the presented grammar-based approach for handling interactions between heterogeneous web-based views is free of any application specifics, it can also serve as a template for applications beyond biological research.  more » « less
Award ID(s):
2124179
PAR ID:
10548806
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Eurographics
Date Published:
Format(s):
Medium: X
Location:
https://doi.org/10.2312/vcbm.20231218
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Graph databases capture richly linked domain knowledge by integrating heterogeneous data and metadata into a unified representation. Here, we present the use of bespoke, interactive data graphics (bar charts, scatter plots, etc.) for visual exploration of a knowledge graph. By modeling a chart as a set of metadata that describes semantic context (SPARQL query) separately from visual context (Vega-Lite specification), we leverage the high-level, declarative nature of the SPARQL and Vega-Lite grammars to concisely specify web-based, interactive data graphics synchronized to a knowledge graph. Resources with dereferenceable URIs (uniform resource identifiers) can employ the hyperlink encoding channel or image marks in Vega-Lite to amplify the information content of a given data graphic, and published charts populate a browsable gallery of the database. We discuss design considerations that arise in relation to portability, persistence, and performance. Altogether, this pairing of SPARQL and Vega-Lite—demonstrated here in the domain of polymer nanocomposite materials science—offers an extensible approach to FAIR (findable, accessible, interoperable, reusable) scientific data visualization within a knowledge graph framework. 
    more » « less
  2. Visualization grammars, often based on the Grammar of Graphics (GoG), have much potential for augmenting data analysis in a programming environment. However, we do not know how analysts conceptualize grammar abstractions, or how a visualization grammar works with data analysis in practice. Therefore, we qualitatively analyzed how experienced analysts (N = 6) from TidyTuesday, a social data project, wrangled and visualized data using GoG-based ggplot2 without given tasks in R Markdown. Though participants’ analysis and customization needs could mismatch with GoG component design, their analysis processes aligned with the goal of GoG to expedite visualization iteration. We also found a feedback loop and tight coupling between visualization and data transformation code, explaining both participants’ productivity and their errors. From these results, we discuss how future visualization grammars can become more practical for analysts and how visualization grammar and analysis tools can better integrate within a programming (i.e., computational notebook) environment. 
    more » « less
  3. We present P5, a web-based visualization toolkit that combines declarative visualization grammar and GPU computing for progressive data analysis and visualization. To interactively analyze and explore big data, progressive analytics and visualization methods have recently emerged. Progressive visualizations of incrementally refining results have the advantages of allowing users to steer the analysis process and make early decisions. P5 leverages declarative grammar for specifying visualization designs and exploits GPU computing to accelerate progressive data processing and rendering. The declarative specifications can be modified during progressive processing to create different visualizations for analyzing the intermediate results. To enable user interactions for progressive data analysis, P5 utilizes the GPU to automatically aggregate and index data based on declarative interaction specifications to facilitate effective interactive visualization. We demonstrate the effectiveness and usefulness of P5 through a variety of example applications and several performance benchmark tests. 
    more » « less
  4. Network traffic data analysis is important for securing our computing environment and data. However, analyzing network traffic data requires tremendous effort because of the complexity of continuously changing network traffic patterns. To assist the user in better understanding and analyzing the network traffic data, an interactive web-based visualization system is designed using multiple coordinated views, supporting a rich set of user interactions. For advancing the capability of analyzing network traffic data, feature extraction is considered along with uncertainty quantification to help the user make precise analyses. The system allows the user to perform a continuous visual analysis by requesting incrementally new subsets of data with updated visual representation. Case studies have been performed to determine the effectiveness of the system. The results from the case studies support that the system is well designed to understand network traffic data by identifying abnormal network traffic patterns. 
    more » « less
  5. Abstract Researchers collect large amounts of user interaction data with the goal of mapping user's workflows and behaviors to their high‐level motivations, intuitions, and goals. Although the visual analytics community has proposed numerous taxonomies to facilitate this mapping process, no formal methods exist for systematically applying these existing theories to user interaction logs. This paper seeks to bridge the gap between visualization task taxonomies and interaction log data by making the taxonomies more actionable for interaction log analysis. To achieve this, we leverage structural parallels between how people express themselves through interactions and language by reformulating existing theories asregular grammars.We represent interactions asterminalswithin a regular grammar, similar to the role of individual words in a language, and patterns of interactions ornon‐terminalsasregular expressionsover these terminals to capture common language patterns. To demonstrate our approach, we generate regular grammars for seven existing visualization taxonomies and develop code to apply them to three public interaction log datasets. In analyzing these regular grammars, we find that the taxonomies at the low‐level (i.e., terminals) show mixed results in expressing multiple interaction log datasets, and taxonomies at the high‐level (i.e., regular expressions) have limited expressiveness, due to primarily two challenges: inconsistencies in interaction log dataset granularity and structure, and under‐expressiveness of certain terminals. Based on our findings, we suggest new research directions for the visualization community to augment existing taxonomies, develop new ones, and build better interaction log recording processes to facilitate the data‐driven development of user behavior taxonomies. 
    more » « less