skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Grammar‐Based Approach for Applying Visualization Taxonomies to Interaction Logs
Abstract Researchers collect large amounts of user interaction data with the goal of mapping user's workflows and behaviors to their high‐level motivations, intuitions, and goals. Although the visual analytics community has proposed numerous taxonomies to facilitate this mapping process, no formal methods exist for systematically applying these existing theories to user interaction logs. This paper seeks to bridge the gap between visualization task taxonomies and interaction log data by making the taxonomies more actionable for interaction log analysis. To achieve this, we leverage structural parallels between how people express themselves through interactions and language by reformulating existing theories asregular grammars.We represent interactions asterminalswithin a regular grammar, similar to the role of individual words in a language, and patterns of interactions ornon‐terminalsasregular expressionsover these terminals to capture common language patterns. To demonstrate our approach, we generate regular grammars for seven existing visualization taxonomies and develop code to apply them to three public interaction log datasets. In analyzing these regular grammars, we find that the taxonomies at the low‐level (i.e., terminals) show mixed results in expressing multiple interaction log datasets, and taxonomies at the high‐level (i.e., regular expressions) have limited expressiveness, due to primarily two challenges: inconsistencies in interaction log dataset granularity and structure, and under‐expressiveness of certain terminals. Based on our findings, we suggest new research directions for the visualization community to augment existing taxonomies, develop new ones, and build better interaction log recording processes to facilitate the data‐driven development of user behavior taxonomies.  more » « less
Award ID(s):
2118201
PAR ID:
10369164
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Computer Graphics Forum
Volume:
41
Issue:
3
ISSN:
0167-7055
Format(s):
Medium: X Size: p. 489-500
Size(s):
p. 489-500
Sponsoring Org:
National Science Foundation
More Like this
  1. We present Animated Vega-Lite, a set of extensions to Vega-Lite that model animated visualizations as time-varying data queries. In contrast to alternate approaches for specifying animated visualizations, which prize a highly expressive design space, Animated Vega-Lite prioritizes unifying animation with the language's existing abstractions for static and interactive visualizations to enable authors to smoothly move between or combine these modalities. Thus, to compose animation with static visualizations, we represent time as an encoding channel. Time encodings map a data field to animation keyframes, providing a lightweight specification for animations without interaction. To compose animation and interaction, we also represent time as an event stream; Vega-Lite selections, which provide dynamic data queries, are now driven not only by input events but by timer ticks as well. We evaluate the expressiveness of our approach through a gallery of diverse examples that demonstrate coverage over taxonomies of both interaction and animation. We also critically reflect on the conceptual affordances and limitations of our contribution by interviewing five expert developers of existing animation grammars. These reflections highlight the key motivating role of in-the-wild examples, and identify three central tradeoffs: the language design process, the types of animated transitions supported, and how the systems model keyframes. 
    more » « less
  2. Taxonomies serve many applications with a structural representation of knowledge. To incorporate emerging concepts into existing taxonomies, the task of taxonomy completion aims to find suitable positions for emerging query concepts. Previous work captured homogeneous token-level interactions inside a concatenation of the query concept term and definition using pre-trained language mod- els. However, they ignored the token-level interactions between the term and definition of the query concepts and their related concepts. In this work, we propose to capture heterogeneous token-level interactions between the different textual components of concepts that have different types of relations. We design a relation-aware mutual attention module (RAMA) to learn such interactions for taxonomy completion. Experimental results demonstrate that our new taxonomy completion framework based on RAMA achieves the state-of-the-art performance on six taxonomy datasets. 
    more » « less
  3. Abstract Research shows that user traits can modulate the use of visualization systems and have a measurable influence on users' accuracy, speed, and attention when performing visual analysis. This highlights the importance of user‐adaptive visualization that can modify themselves to the characteristics and preferences of the user. However, there are very few such visualization systems, as creating them requires broad knowledge from various sub‐domains of the visualization community. A user‐adaptive system must consider which user traits they adapt to, their adaptation logic and the types of interventions they support. In this STAR, we survey a broad space of existing literature and consolidate them to structure the process of creating user‐adaptive visualizations into five components: Capture ⒶInputfrom the user and any relevant peripheral information. Perform computational ⒷUser Modellingwith this input to construct a ⒸUser Representation. Employ ⒹAdaptation Assignmentlogic to identify when and how to introduce ⒺInterventions. Our novel taxonomy provides a road map for work in this area, describing the rich space of current approaches and highlighting open areas for future work. 
    more » « less
  4. Visualization grammars are gaining popularity as they allow visualization specialists and experienced users to quickly create static and interactive views. Existing grammars, however, mostly focus on abstract views, ignoring three-dimensional (3D) views, which are very important in fields such as natural sciences. We propose a generalized interaction grammar for the problem of coordinating heterogeneous view types, such as standard charts (e.g., based on Vega-Lite) and 3D anatomical views. An important aspect of our web-based framework is that user interactions with data items at various levels of detail can be systematically integrated and used to control the overall layout of the application workspace. With the help of a concise JSON-based specification of the intended workflow, we can handle complex interactive visual analysis scenarios. This enables rapid prototyping and iterative refinement of the visual analysis tool in collaboration with domain experts. We illustrate the usefulness of our framework in two real-world case studies from the field of neuroscience. Since the logic of the presented grammar-based approach for handling interactions between heterogeneous web-based views is free of any application specifics, it can also serve as a template for applications beyond biological research. 
    more » « less
  5. Regular expressions are frequently found in programming projects. Studies have found that developers can accurately determine whether a string matches a regular expression. However, we still do not know the challenges associated with composing regular expressions. We conduct an exploratory case study to reveal the tools and strategies developers use during regular expression composition. In this study, 29 students are tasked with composing regular expressions that pass unit tests illustrating the intended behavior. The tasks are in Java and the Eclipse IDE was set up with JUnit tests. Participants had one hour to work and could use any Eclipse tools, web search, or web-based tools they desired. Screen- capture software recorded all interactions with browsers and the IDE. We analyzed the videos quantitatively by transcribing logs and extracting personas. Our results show that participants were 30% successful (28 of 94 attempts) at achieving a 100% pass rate on the unit tests. When participants used tools frequently, as in the case of the novice tester and the knowledgeable tester personas, or when they guess at a solution prior to searching, they are more likely to pass all the unit tests. We also found that compile errors often arise when participants searched for a result and copy/pasted the regular expression from another language into their Java files. These results point to future research into making regular expression composition easier for programmers, such as integrating visualization into the IDE to reduce context switching or providing language migration support when reusing regular expressions written in another language to reduce compile errors. 
    more » « less