Abstract Post‐traumatic osteoarthritis develops following an inciting injury to a joint and results in cartilage degeneration. Mechanical loading, including articulation, drives anabolic responses in cartilage clinically, in vivo, and in vitro. Tribological articulation, or sliding of cartilage on a glass counterface, has long been used as an in vitro tool to study cartilage tissue behavior. However, it is unclear if tribological articulation affects chondrocyte fate following injury, and if the timing of articulation impacts the resultant effect. The goal of this study was to investigate the effect of tribological articulation on injured cartilage tissue at two time points: (i) performed immediately after injury and (ii) 24 h after injury. Neonatal bovine femoral cartilage explants were injured using a rapid spring‐loaded impactor and subsequently subjected to tribological articulation. Cell death due to impact injury was highest near the articular surface, suggesting a strain‐dependent mechanism. Immediate articulation following injury mitigated cell death compared to injury alone or delayed articulation; markers for both general cell death and early‐stage apoptosis were markedly decreased in the explants that were immediately slid. Interestingly, mitigation of cell death due to sliding was most predominant at the cartilage surface. Tribological articulation is known to create fluid flow within the tissue, predominantly at the articular surface, which could drive the protective response seen here. Altogether, this work shows that perturbations to the cellular environment immediately following cartilage injury significantly impact chondrocyte fate. 
                        more » 
                        « less   
                    This content will become publicly available on December 1, 2025
                            
                            Heterogeneous distribution of viscosupplements in vivo is correlated to ex vivo frictional properties of equine cartilage
                        
                    
    
            Abstract Intra‐articular injections of hyaluronic acid (HA) are the cornerstone of osteoarthritis (OA) treatments. However, the mechanism of action and efficacy of HA viscosupplementation are debated. As such, there has been recent interest in developing synthetic viscosupplements. Recently, a synthetic 4 wt% polyacrylamide (pAAm) hydrogel was shown to effectively lubricate and bind to the surface of cartilage in vitro. However, its ability to localize to cartilage and alter the tribological properties of the tissue in a live articulating large animal joint is not known. The goal of this study was to quantify the distribution and extent of localization of pAAm in the equine metacarpophalangeal or metatarsophalangeal joint (fetlock joint), and determine whether preferential localization of pAAm influences the tribological properties of the tissue. An established planar fluorescence imaging technique was used to visualize and quantify the distribution of fluorescently labeled pAAm within the joint. While the pAAm hydrogel was present on all surfaces, it was not uniformly distributed, with more material present near the site of the injection. The lubricating ability of the cartilage in the joint was then assessed using a custom tribometer across two orders of magnitude of sliding speed in healthy synovial fluid. Cartilage regions with a greater coverage of pAAm, that is, higher fluorescent intensities, exhibited friction coefficients nearly 2‐fold lower than regions with lesser pAAm (Rrm = −0.59,p < 0.001). Collectively, the findings from this study indicate that intra‐articular viscosupplement injections are not evenly distributed inside a joint, and the tribological outcomes of these materials is strongly determined by the ability of the material to localize to the articulating surfaces in the joint. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10548818
- Publisher / Repository:
- Wiley Online Library
- Date Published:
- Journal Name:
- Journal of Biomedical Materials Research Part A
- Volume:
- 112
- Issue:
- 12
- ISSN:
- 1549-3296
- Page Range / eLocation ID:
- 2149 to 2159
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Objective The aim of this study was to evaluate the functional, systemic, synovial and articular changes after intra-articular administration of a synthetic lubricin within healthy canine stifles. Study Design A prospective randomized blinded placebo-controlled study composed of 10 dogs equally divided into either a treatment group (intra-articular synthetic lubricin injection, n = 5) or control group (saline, n = 5). Clinical (orthopaedic examination, gait observation, gait analysis), biochemical (complete blood count and biochemistry profile) and local tissue outcomes (joint fluid analysis, joint capsule and articular cartilage histopathology) were evaluated over a time period of 3 months. Results No significant differences between the treatment group and control group were identified with regard to baseline patient parameters. No clinically significant orthopaedic examination abnormalities, gait abnormalities, biochemical alterations, joint fluid alterations or histopathological alterations were identified over the course of the study. Conclusion The synthetic lubricin studied herein is both biocompatible and safe for a single administration within the canine stifle joint. Further research is necessary to evaluate the clinical efficacy of the synthetic lubricin in canine osteoarthritic joints.more » « less
- 
            Abstract Osteoarthritis (OA) of the knee joint is a degenerative disease initiated by mechanical stress that affects millions of individuals. The disease manifests as joint damage and synovial inflammation. Post-traumatic osteoarthritis (PTOA) is a specific form of OA caused by mechanical trauma to the joint. The progression of PTOA is prevented by immediate post-injury therapeutic intervention. Intra-articular injection of anti-inflammatory therapeutics (e.g. corticosteroids) is a common treatment option for OA before end-stage surgical intervention. However, the efficacy of intra-articular injection is limited due to poor drug retention time in the joint space and the variable efficacy of corticosteroids. Here, we endeavored to characterize a four-arm maleimide-functionalized polyethylene glycol (PEG-4MAL) hydrogel system as a ‘mechanical pillow’ to cushion the load-bearing joint, withstand repetitive loading and improve the efficacy of intra-articular injections of nanoparticles containing dexamethasone, an anti-inflammatory agent. PEG-4MAL hydrogels maintained their mechanical properties after physiologically relevant cyclic compression and released therapeutic payload in an on-demand manner under in vitro inflammatory conditions. Importantly, the on-demand hydrogels did not release nanoparticles under repetitive mechanical loading as experienced by daily walking. Although dexamethasone had minimal protective effects on OA-like pathology in our studies, the PEG-4MAL hydrogel functioned as a mechanical pillow to protect the knee joint from cartilage degradation and inhibit osteophyte formation in an in vivo load-induced OA mouse model.more » « less
- 
            Nanoscale insight into the degradation mechanisms of the cartilage articulating surface preceding OAnull (Ed.)Osteoarthritis (OA) is a degenerative joint disease and a leading cause of disability globally. In OA, the articulating surface of cartilage is compromised by fissures and cracks, and sometimes even worn away completely. Due to its avascular nature, articular cartilage has a poor self-healing ability, and therefore, understanding the mechanisms underlying degradation is key for OA prevention and for optimal design of replacements. In this work, the articulating surface of bovine cartilage was investigated in an environment with enhanced calcium concentration -as often found in cartilage in relation to OA- by combining atomic force microscopy, spectroscopy and an extended surface forces apparatus for the first time. The experimental results reveal that increased calcium concentration irreversibly weakens the cartilage's surface layer, and promotes stiction and high friction. The synergistic effect of calcium on altering the cartilage surface's structural, mechanical and frictional properties is proposed to compromise cartilage integrity at the onset of OA. Furthermore, two mechanisms at the molecular level based on the influence of calcium on lubricin and on the aggregation of the cartilage's matrix, respectively, are identified. The results of this work might not only help prevent OA but also help design better cartilage replacements.more » « less
- 
            Osteoarthritis (OA), a chronic and degenerative joint disease, remains a challenge in treatment due to the lack of disease-modifying therapies. As a promising therapeutic agent, adipose-derived stem cells (ADSCs) have an effective anti-inflammatory and chondroprotective paracrine effect that can be enhanced by genetic modification. Unfortunately, direct cell delivery without matrix support often results in poor viability of therapeutic cells. Herein, a hydrogel implant approach that enabled intra-articular delivery of gene-engineered ADSCs was developed for improved therapeutic outcomes in a surgically induced rat OA model. An injectable extracellular matrix (ECM)-mimicking hydrogel was prepared as the carrier for cell delivery, providing a favorable microenvironment for ADSC spreading and proliferation. The ECM-mimicking hydrogel could reduce cell death during and post injection. Additionally, ADSCs were genetically modified to overexpress transforming growth factor-β1 (TGF-β1), one of the paracrine factors that exert an anti-inflammatory and pro-anabolic effect. The gene-engineered ADSCs overexpressing TGF-β1 (T-ADSCs) had an enhanced paracrine effect on OA-like chondrocytes, which effectively decreased the expression of tumor necrosis factor-alpha and increased the expression of collagen II and aggrecan. In a surgically induced rat OA model, intra-articular injection of the T-ADSC-loaded hydrogel markedly reduced cartilage degeneration, joint inflammation, and the loss of the subchondral bone. Taken together, this study provides a potential biomaterial strategy for enhanced OA treatment by delivering the gene-engineered ADSCs within an ECM-mimicking hydrogel.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
