skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Relevant biochar characteristics influencing compressive strength of biochar-cement mortars
Abstract To counteract the contribution of CO2emissions by cement production and utilization, biochar is being harnessed as a carbon-negative additive in concrete. Increasing the cement replacement and biochar dosage will increase the carbon offset, but there is large variability in methods being used and many researchers report strength decreases at cement replacements beyond 5%. This work presents a reliable method to replace 10% of the cement mass with a vast selection of biochars without decreasing ultimate compressive strength, and in many cases significantly improving it. By carefully quantifying the physical and chemical properties of each biochar used, machine learning algorithms were used to elucidate the three most influential biochar characteristics that control mortar strength: initial saturation percentage, oxygen-to-carbon ratio, and soluble silicon. These results provide additional research avenues for utilizing several potential biomass waste streams to increase the biochar dosage in cement mixes without decreasing mechanical properties. Graphical Abstract  more » « less
Award ID(s):
2139035
PAR ID:
10548959
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Biochar
Volume:
6
Issue:
1
ISSN:
2524-7867
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Biochar is well-accepted as a viable climate mitigation strategy to promote agricultural and environmental benefits such as soil carbon sequestration and crop productivity while reducing greenhouse gas emissions. However, its effects on soil microbial biomass carbon (SMBC) in field experiments have not yet been thoroughly explored. In this study, we collected 539 paired globally published observations to study the impacts of biochar on SMBC under field experiments. Our results suggested an overall positive impact of biochar (21.31%) on SMBC, varying widely with different climate conditions, soil types, biochar properties, and management practices. Biochar application exhibits significant impacts under climates with mean annual temperature (MAT) < 15 °C and mean annual precipitation (MAP) between 500 and 1000 mm. Soils of coarse and fine texture, alkaline pH (SPH), soil total organic carbon (STC) content up to 10 g/kg, soil total nitrogen (STN) content up to 1.5 g/kg, and low soil cation exchange capacity (SCEC) content of < 5 cmol/kg received higher positive effects of biochar application on SMBC. Biochar produced from crop residue, specifically from cotton and maize residue, at pyrolysis temperature (BTM) of < 400 °C, with a pH (BPH) between 8 and 9, low application rate (BAP) of < 10 t/ha, and high ash content (BASH) > 400 g/kg resulted in an increase in SMBC. Low biochar total carbon (BTC) and high total nitrogen (BTN) positively affect the SMBC. Repeated application significantly increased the SMBC by 50.11%, and fresh biochar in the soil (≤ 6 months) enhanced SMBC compared to the single application and aged biochar. Biochar applied with nitrogen fertilizer (up to 300 kg/ha) and manure/compost showed significant improvements in SMBC, but co-application with straw resulted in a slight negative impact on the SMBC. The best-fit gradient boosting machines model, which had the lowest root mean square error, demonstrated the relative importance of various factors on biochar effectiveness: biochar, soil, climate, and nitrogen applications at 46.2%, 38.1%, 8.3%, and 7.4%, respectively. Soil clay proportion, BAP, nitrogen application, and MAT were the most critical variables for biochar impacts on SMBC. The results showed that biochar efficiency varies significantly in different climatic conditions, soil environments, field management practices, biochar properties, and feedstock types. Our meta-analysis of field experiments provides the first quantitative review of biochar impacts on SMBC, demonstrating its potential for rehabilitating nutrient-deprived soils and promoting sustainable land management. To improve the efficiency of biochar amendment, we call for long-term field experiments to measure SMBC across diverse agroecosystems. Graphical Abstract 
    more » « less
  2. This paper examines the influence of biochar on the properties of alkali-activated slag pastes using two activator solutions, namely NaOH and Na2CO3. The biochar demonstrated different absorption kinetics in the mixture of slag and the two activator solutions. The pastes with biochar showed a delay in the heat flow peak, compared to the pastes without biochar, but the cumulative heat release in these pastes at later hours was increased, compared to the pastes without biochar. It was found that the use of biochar reduced autogenous shrinkage in the pastes and the reduction in autogenous shrinkage was more pronounced in the alkali-activated slag with NaOH, compared to Na2CO3. The void structure of the pastes was investigated using x-ray micro-computed tomography. It was found that refined pore structure due to reduced effective solution/slag in the pastes with biochar was able to compensate for the decreasing effect of biochar voids on compressive strength. The electrical resistivity was shown to be lower in the pastes with biochar. 
    more » « less
  3. Abstract Lignin is the most abundant natural source of aromatics but remains underutilized. Elemental sulfur is a plentiful by-product of fossil fuel refining. Herein we report a strategy for preparing a durable composite by the one-pot reaction of elemental sulfur and lignin oil comprising lower molecular weight lignin derivatives. A lignin oil-sulfur composite (LOS90) was prepared by reacting 10 wt. % lignin oil with 90 wt. % elemental sulfur. The composite could be remelted and reshaped over several cycles without loss of properties. Results from the study showed thatLOS90has properties competitive with or exceeding values for commercial ordinary Portland cement and brick formulations. For example,LOS90displayed impressive compressive strength (22.1 MPa) and flexural strength (5.7 MPa).LOS90is prepared entirely from waste materials with 98.5% atom economy of composite synthesis, a lowEfactor of 0.057, and lignin char as the only waste product of the process for its preparation. These results suggest the potential applications of lignin and waste sulfur in the continuous efforts to develop more recyclable and sustainable materials. 
    more » « less
  4. null (Ed.)
    Semi-crystalline carbon biochar is derived from spent coffee grounds (SCG) by a controlled pyrolysis process at high temperature/pressure conditions. Obtained biochar is characterized using XRD, SEM, and TEM techniques. Biochar particles are in the micrometer range with nanostructured morphologies. The SCG biochar thus produced is used as reinforcement in epoxy resin to 3 D print samples using the direct-write (DW) method with 1 and 3 wt. % loadings. Rheology results show that the addition of biochar makes resin viscous, enabling it to be stable soon after print; however, it could also lead to clogging of resin in printer head. The printed samples are characterized for chemical, thermal and mechanical properties using FTIR, TGA, DMA and flexure tests. Storage modulus improved with 1 wt. % biochar addition up to 27.5% and flexural modulus and strength increased up to 55.55% and 43.30% respectively. However, with higher loading of 3 wt. % both viscoelastic and flexural properties of 3D printed samples drastically reduced thus undermining the feasibility of 3D printing biochar reinforced epoxies at higher loadings. 
    more » « less
  5. Abstract Biochar is a solid by-product of thermochemical conversion of biomass to bio-oil and syngas. It has a carbonaceous skeleton, a small amount of heteroatom functional groups, mineral matter, and water. Biochar’s unique physicochemical structures lead to many valuable properties of important technological applications, including its sorption capacity. Indeed, biochar’s wide range of applications include carbon sequestration, reduction in greenhouse gas emissions, waste management, renewable energy generation, soil amendment, and environmental remediation. Aside from these applications, new scientific insights and technological concepts have continued to emerge in the last decade. Consequently, a systematic update of current knowledge regarding the complex nature of biochar, the scientific and technological impacts, and operational costs of different activation strategies are highly desirable for transforming biochar applications into industrial scales. This communication presents a comprehensive review of physical activation/modification strategies and their effects on the physicochemical properties of biochar and its applications in environment-related fields. Physical activation applied to the activation of biochar is discussed under three different categories: I) gaseous modification by steam, carbon dioxide, air, or ozone; II) thermal modification by conventional heating and microwave irradiation; and III) recently developed modification methods using ultrasound waves, plasma, and electrochemical methods. The activation results are discussed in terms of different physicochemical properties of biochar, such as surface area; micropore, mesopore, and total pore volume; surface functionality; burn-off; ash content; organic compound content; polarity; and aromaticity index. Due to the rapid increase in the application of biochar as adsorbents, the synergistic and antagonistic effects of activation processes on the desired application are also covered. 
    more » « less