skip to main content


Title: A comprehensive review on physical activation of biochar for energy and environmental applications
Abstract Biochar is a solid by-product of thermochemical conversion of biomass to bio-oil and syngas. It has a carbonaceous skeleton, a small amount of heteroatom functional groups, mineral matter, and water. Biochar’s unique physicochemical structures lead to many valuable properties of important technological applications, including its sorption capacity. Indeed, biochar’s wide range of applications include carbon sequestration, reduction in greenhouse gas emissions, waste management, renewable energy generation, soil amendment, and environmental remediation. Aside from these applications, new scientific insights and technological concepts have continued to emerge in the last decade. Consequently, a systematic update of current knowledge regarding the complex nature of biochar, the scientific and technological impacts, and operational costs of different activation strategies are highly desirable for transforming biochar applications into industrial scales. This communication presents a comprehensive review of physical activation/modification strategies and their effects on the physicochemical properties of biochar and its applications in environment-related fields. Physical activation applied to the activation of biochar is discussed under three different categories: I) gaseous modification by steam, carbon dioxide, air, or ozone; II) thermal modification by conventional heating and microwave irradiation; and III) recently developed modification methods using ultrasound waves, plasma, and electrochemical methods. The activation results are discussed in terms of different physicochemical properties of biochar, such as surface area; micropore, mesopore, and total pore volume; surface functionality; burn-off; ash content; organic compound content; polarity; and aromaticity index. Due to the rapid increase in the application of biochar as adsorbents, the synergistic and antagonistic effects of activation processes on the desired application are also covered.  more » « less
Award ID(s):
1632899
NSF-PAR ID:
10091642
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Reviews in Chemical Engineering
Volume:
0
Issue:
0
ISSN:
0167-8299
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Biochar (BC) generated from thermal and hydrothermal cracking of biomass is a carbon-rich product with the microporous structure. The graphene-like structure of BC contains different chemical functional groups (e.g. phenolic, carboxylic, carbonylic, etc.), making it a very attractive tool for wastewater treatment, CO 2 capture, toxic gas adsorption, soil amendment, supercapacitors, catalytic applications, etc. However, the carbonaceous and mineral structure of BC has a potential to accept more favorable functional groups and discard undesirable groups through different chemical processes. The current review aims at providing a comprehensive overview on different chemical modification mechanisms and exploring their effects on BC physicochemical properties, functionalities, and applications. To reach these objectives, the processes of oxidation (using either acidic or alkaline oxidizing agents), amination, sulfonation, metal oxide impregnation, and magnetization are investigated and compared. The nature of precursor materials, modification preparatory/conditions, and post-modification processes as the key factors which influence the final product properties are considered in detail; however, the focus is dedicated to the most common methods and those with technological importance. 
    more » « less
  2. null (Ed.)
    Biochar is a carbon-rich material prepared from the pyrolysis of biomass under various conditions. Recently, biochar drew great attention due to its promising potential in climate change mitigation, soil amendment, and environmental control. Obviously, biochar can be a beneficial soil amendment in several ways including preventing nutrients loss due to leaching, increasing N and P mineralization, and enabling the microbial mediation of N2O and CO2 emissions. However, there are also conflicting reports on biochar effects, such as water logging and weathering induced change of surface properties that ultimately affects microbial growth and soil fertility. Despite the voluminous reports on soil and biochar properties, few studies have systematically addressed the effects of biochar on the sequestration of carbon, nitrogen, and phosphorus in soils. Information on microbially-mediated transformation of carbon (C), nitrogen (N), and phosphorus (P) species in the soil environment remains relatively uncertain. A systematic documentation of how biochar influences the fate and transport of carbon, phosphorus, and nitrogen in soil is crucial to promoting biochar applications toward environmental sustainability. This report first provides an overview on the adsorption of carbon, phosphorus, and nitrogen species on biochar, particularly in soil systems. Then, the biochar-mediated transformation of organic species, and the transport of carbon, nitrogen, and phosphorus in soil systems are discussed. This review also reports on the weathering process of biochar and implications in the soil environment. Lastly, the current knowledge gaps and priority research directions for the biochar-amended systems in the future are assessed. This review focuses on literatures published in the past decade (2009–2021) on the adsorption, degradation, transport, weathering, and transformation of C, N, and P species in soil systems with respect to biochar applications. 
    more » « less
  3. Biochar is frequently made using high-tech, high-control methods which will no doubt better optimize the final material for its intended purpose and increase its value. In contrast, we used low-tech, low-control methods to produce a developing world biochar (DWB) from two common crop wastes, cottonseed (CS) and pecan shell (PS). We created DWB biochar using a top-lit updraft microgasifier (TLUD) made from paint cans, and compared it to a biochar created in a muffle furnace held at 450 °C (MF450). We first used modern material characterization methods (yield, BET, SEM/EDS, TGA, XRD, FTIR) to understand the difference in biochar production methods on the feedstock. We then used batch equilibrium adsorption with cationic and anionic dyes (methyl orange, MO and crystal violet, CV) to examine environmental performance. The TLUD method generally has a lower biochar production yield than MF450 because we believe much of the material in the TLUD achieves temperatures > 450 °C and is sometimes difficult to retain in the device. The higher temperatures in the TLUD device lead to a biochar which is more microporous, has greater surface area, has less surface functional groups, has greater ash content, is more carbonized, and has lower residual cellulose crystallinity. There were differences in adsorption performance whereby the MF450 biochar adsorbs CV more strongly than the TLUD. For MO, PS-TLUD is less effective at adsorbing the dye when compared to PS-MF450, while CS-TLUD has a much higher adsorption strength than CS-MF450. We are not certain why the two methods show opposite effects in different feedstock but speculate that it may have to do with the much higher mineral content in the PS-TLUD compared to its MF450 counterpart. Out of many isotherms examined Freundlich and Langmuir isotherms provide a best-fit to our data only about half the time. Sometimes an S-shaped isotherm was the best fit or still fit the data reasonably well. Comparing the dye adsorption to other studies, the DWB does not adsorb as well, yet it is still effective for removal at environmental dye concentrations of relevance. Overall, we conclude that DWB, made in this uncontrolled fashion, can make a reasonably high quality biochar based on material properties and environmental performance. We suggest that additional research be done on other low-tech biochar production methods to see how to scale-up and optimize them according a developing world community's intended use. 
    more » « less
  4. Electronic and optoelectronic devices often require multifunctional properties combined with conductivity that are not achieved from a single species of molecules. The capability to tune chain length, shape, and physicochemical characteristics of conductive copolymers provides substantial benefits for a wide range of scientific areas that require unique and engineered optical, electrical, or optoelectronic properties. Although efforts have been made to develop synthetic routes to realize such promising copolymers, an understanding of the process–structure–property relationship of the synthesis methods needs to be further enhanced. In addition, since traditional methods are often limited to achieving pinhole-free, large-area coverage, and conformal coating of copolymer films with thickness controllability, unconventional synthetic strategies to address these issues need to be established. This Perspective article intends to enhance knowledge on the process–structure–property relationship of functional copolymers by providing the definition of copolymers, polymerization mechanisms, and a comparison of traditional and emerging synthetic methods with reaction parameters and tuned physical properties. In parallel, practical applications featuring the desired copolymers in electronic, optical, and sensing devices are showcased. Last, a pathway toward further advancement of unique copolymers for next-generation device applications is discussed. 
    more » « less
  5. Abstract

    This study presents a comprehensive survey of microgel‐coated materials and their functional behavior, describing the complex interplay between the physicochemical and mechanical properties of the microgels and the chemical and morphological features of substrates. The cited literature is articulated in four main sections: i) properties of 2D and 3D substrates, ii) synthesis, modification, and characterization of the microgels, iii) deposition techniques and surface patterning, and iv) application of microgel‐coated surfaces focusing on separations, sensing, and biomedical applications. Each section discusses – by way of principles and examples – how the various design parameters work in concert to deliver functionality to the composite systems. The case studies presented herein are viewed through a multi‐scale lens. At the molecular level, the surface chemistry and the monomer make‐up of the microgels endow responsiveness to environmental and artificial physical and chemical cues. At the micro‐scale, the response effects shifts in size, mechanical, and optical properties, and affinity towards species in the surrounding liquid medium, ranging from small molecules to cells. These phenomena culminate at the macro‐scale in measurable, reversible, and reproducible effects, aiming in a myriad of directions, from lab‐scale to industrial applications.

     
    more » « less